Abstract:
A hyperspectral imaging system having an optical path. The system including an illumination source adapted to output a light beam, the light beam illuminating a target, a dispersing element arranged in the optical path and adapted to separate the light beam into a plurality of wavelengths, a digital micromirror array adapted to tune the plurality of wavelengths into a spectrum, an optical device having a detector and adapted to collect the spectrum reflected from the target and arranged in the optical path and a processor operatively connected to and adapted to control at least one of: the illumination source; the dispersing element; the digital micromirror array; the optical device; and, the detector, the processor further adapted to output a hyperspectral image of the target. The dispersing element is arranged between the illumination source and the digital micromirror array, the digital micromirror array is arranged to transmit the spectrum to the target and the optical device is arranged in the optical path after the target.
Abstract:
An optical system comprising an optical instrument and a processing unit. The optical instrument may comprise an illumination source and a sensor. The processing unit may comprise a data storage having stored thereon a characterization of the illumination source and a characterization of the sensor. The processing unit may also comprise a computer configured to calculate a system response of the illumination source and the receiving element considering the characterization of the illumination source and the characterization of the receiving element.
Abstract:
A spectroscope designed to utilize an adaptive optical element such as a micro mirror array (MMA) and two distinct light channels and detectors. The devices can provide for real-time and near real-time scaling and normalization of signals.
Abstract:
An optical imaging system and method for achieving a large depth of field without decreasing the relative aperture of an imaging lens. The imaging system has a light source for sequentially illuminating an object to be imaged with light of different ones of a plurality of wavelengths, and an imaging lens that has a focal length that varies with the wavelength of the light that illuminates the object. For each wavelength of light by which the object is illuminated, the imaging lens will image a different object plane onto an image receiving unit, and the image receiving unit will capture one well-focused, high resolution image of the object.
Abstract:
An optical filter for the selective attenuation of specific wavelengths of light includes at least one spectrally dispersive element, such as a diffraction grating or prism, in combination with an optical filter. A dispersive element separates broadband light into a constituent wavelength spread in angle space. An optical filter, or filter array, can block and/or attenuate specific wavelengths or wavelength ranges of interest while the light is angularly dispersed. A second dispersive element can recombine this filtered, separated wavelength fan of light into a coaxial broadband beam having a smoother intensity profile than the unfiltered beam.
Abstract:
An optical imaging system and method for achieving a large depth of field without decreasing the relative aperture of an imaging lens. The imaging system has a light source for sequentially illuminating an object to be imaged with light of different ones of a plurality of wavelengths, and an imaging lens that has a focal length that varies with the wavelength of the light that illuminates the object. For each wavelength of light by which the object is illuminated, the imaging lens will image a different object plane onto an image receiving unit, and the image receiving unit will capture one well-focused, high resolution image of the object.
Abstract:
An optical arrangement for directing illumination light to a sample and for directing the detection light proceeding from the sample to a detector has a spectrally selective influencing means in the beam path of the detection light, which influences the polarization properties of the illumination light reflected or scattered from the sample in such a way that a polarizing beam splitter splits the illumination light reflected or scattered from the sample out of the detection light.
Abstract:
The invention features a multi-spectral microscopy system for illuminating a sample with light of a selectable spectral content and generating an image of the sample in response to the illumination. The multi-spectral microscopy system includes a multispectral illuminator that provides output radiation having the selectable spectral content. A preferred set of optical arrangements for the multispectral illuminator generates the output radiation so that the spectral content of the output radiation is substantially uniform across its transverse profile. Furthermore, the multispectral illuminator can include monitoring optics and a corresponding detector array that independently monitors the output in each spectral band of the radiation produced by the multispectral illuminator. The monitoring provides calibration, feedback, and/or source aging information to insure robust and reliable performance for the multispectral illuminator. The multi-spectral microscopy system also includes a microscope which illuminates the sample with light derived from the output of the multispectral illuminator, and beam modification optics, which modify the output from the lamp prior to the microscope to increase the light efficiency of the microscope and fully exploit field of view and resolution of the microscope.
Abstract:
An optical arrangement for directing illumination light to a sample and for directing the detection light proceeding from the sample to a detector has a spectrally selective influencing means in the beam path of the detection light, which influences the polarization properties of the illumination light reflected or scattered from the sample in such a way that a polarizing beam splitter splits the illumination light reflected or scattered from the sample out of the detection light.
Abstract:
An imaging spectral device for use in the spectrum image analysis for performing the spectroscopic analysis of the respective points in two dimensional field is disclosed. The device comprises an imaging spectral device composing a white-light source to illuminate an object to be measured, a tunable filter located in the optical path between the object and the white-light source, a driving mechanism for wavelength scanning of the tunable filter, and a control unit in which scanning rate of transmitting wavelength of the tunable filter is controlled by the above-mentioned driving mechanism in such a manner that the spectral transmittance of the tunable filter integrated within the exposure time becomes desired spectral distribution of the object to be measured.