Abstract:
The invention provides an automatic analyzer having a scattered-light detecting optical system in which a light source is disposed at an angle with respect to a plane of a reaction vessel. This reduces the amount of a sample-reagent mix required for an analysis, thereby reducing the running cost of reagents as well, and also allows relatively free design of reaction vessels in terms of their sizes and shapes. The automatic analyzer includes: a reaction vessel in which a sample is caused to react with a reagent; a reaction disk on which to place reaction vessels in the form of a circle; a reaction disk rotating mechanism for rotating the reaction disk; a light source for radiating light to be measured onto one of the reaction vessels; and a photodetector for detecting transmissive light radiated from the light source and passing through a sample-reagent mix in the one of the reaction vessels. The automatic analyzer further includes an optical system for causing the light source to radiate light onto one of the reaction vessels at an angle with respect to a plane of the one of the reaction vessels.
Abstract:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
Abstract:
Reaction vessels and a reaction vessel detecting mechanism are disposed on the outer circumference of a reaction disk. A positional detector for detecting the position of a reaction vessel is placed on the track of the reaction vessels. A light source and a spectrophotometer are also disposed so as to sandwich one of the reaction vessels, thereby measuring the light intensity of the reaction vessels. With this arrangement, the steps of: repetitively starting and stopping the rotation of the reaction disk with high resolution; conducting photometric measurement while the reaction disk is being halted; and acquiring an absorbance distribution of the reaction vessels are performed. This makes it possible for an automatic analyzer, which examines particular constituents of a biological sample (e.g., blood and urine), to detect contaminants and scars on the reaction vessels in a separate manner, thereby ensuring the high quality of the reaction vessels.
Abstract:
The present invention is a mold pathogen detection apparatus in which an agar strip is exposed to the environment being tested for a period of time and then exposed to a non-UV light to determine the amount of light passing through the agar strip.
Abstract:
Using an LED element as a light source, a photometric unit including the light source, a light receiving element and other components therebetween is reduced in size. A holder 30 detachable from the device as a unit holds a light emission unit 15 formed of an LED and a light receiving element 21, and the holder is placed inside a thermostatic chamber 18 which holds a constant temperature fluid 17. Thus, the photometric unit is reduced in size.
Abstract:
A system for conducting the identification and quantification of micro-organisms, e.g., bacteria in urine samples which includes: 1) several disposable cartridges for holding four disposable components including a centrifuge tube, a pipette tip having a 1 ml volume, a second pipette tip having a 0.5 ml volume, and an optical cup or cuvette; 2) a sample processor for receiving the disposable cartridges and processing the urine samples including transferring the processed urine sample to the optical cups; and 3) an optical analyzer for receiving the disposable cartridges and configured to analyze the type and quantity of micro-organisms in the urine sample. The disposable cartridges with their components including the optical cups or cuvettes are used in the sample processor, and the optical cups or cuvettes containing the processed urine samples are used in the optical analyzer for identifying and quantifying the type of micro-organism existing in the processed urine samples.
Abstract:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in reaction receptacles. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the reaction receptacles from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
Abstract:
A photometric apparatus and an automatic analyzer in which liquid samples contained in vessels are measured with light of different wavelengths while the vessels are transferred are provided. A photometric apparatus includes light sources that are arranged in the movement direction of a vessel and emit light of different wavelengths, light-receiving devices that are located opposing the light sources with the vessels interposed inbetween and receive light of different wavelengths emitted from the light sources. The arrangement length of light sources along the movement direction of the vessels is shorter than the arrangement pitch of the vessels.
Abstract:
A light amount is increased and an analyzing accuracy can be kept in accordance with an enlargement of a load angle, however, a scattered light tends to be loaded in an analysis accompanying the scattered light and a dynamic range of a concentration which can be measured becomes narrow. A light is dispersed by a light dispersing portion, a load angle of the received light is changed per wavelength, the load angle is made larger in the light of a wavelength having a small light amount, and the load angle is made smaller in the light a wavelength having a large light amount and used for an analysis accompanying a scattered light. Accordingly, it is possible to gain a dynamic range of a concentration which can be measured in the analysis accompanying the scattered light, while increasing the light amount and maintaining the analyzing accuracy.
Abstract:
An optical detection apparatus and method using a phase sensitive detection method for a disk-type microfluidic device are provided. The optical detection apparatus includes: a rotation driving unit stopping rotation of the microfluidic device when a detection area of the disk-type microfluidic device reaches a predetermined position; at least one light source turned on and off at a corresponding frequency to emit light to the detection area held at the predetermined position; an optical sensor disposed to face the detection area and generating an electrical signal according to intensity of incident light; and a signal processing unit receiving the electrical signal generated by the optical sensor and outputting only a signal having a same frequency as an on/off frequency of one of the at least one light source.