Abstract:
Embodiments of the present invention are directed to imaging technologies, and, in particular, to an imaging system that detects relatively weak signals, over time, and that uses the detected signals to determine the positions of signal emitters. Particular embodiments of the present invention are directed to methods and systems for imaging fluorophore-labeled samples in order to produce images of the sample at resolutions significantly greater than the diffraction-limited resolution associated with optical microscopy. Embodiments of the present invention employ overlapping-emitter-image disambiguation to allow data to be collected from densely arranged emitters, which significantly decreases the data-collection time for producing intermediate images as well as the number of intermediate images needed to computationally construct high-resolution final images. Additional embodiments of the present invention employ hierarchical image-processing techniques to further resolve and interpret disambiguated images.
Abstract:
A method for monitoring surface phenomena includes measuring a first surface plasmon resonance angle value (φSPR,REF) of a sample region (REG1), measuring a first critical angle value (φTIR,REF) of the sample region (REG1), causing a change of surface concentration (cM1,SRF) of an analyte (M1) at the sample region (REG1), changing the bulk composition at the sample region (REG1), measuring a second surface plasmon resonance angle value (φSPR(t)) of the sample region (REG1), measuring a second critical angle value (φTIR(t)) of the sample region (REG1), and determining an indicator value (φAUX(t)) indicative of the change of the surface concentration (cM1,SRF), wherein the indicator value (φAUX(t)) is determined from the second surface plasmon resonance angle value (φSPR(t)) by compensating an effect of the bulk composition, and wherein the magnitude (φCOMP) of said effect is determined by using the second critical angle value (φTIR(t)).
Abstract:
A defect inspection method and device for irradiating a linear region on a surface-patterned sample mounted on a table, with illumination light from an inclined direction to the sample, next detecting in each of a plurality of directions an image of the light scattered from the sample irradiated with the illumination light, then processing signals obtained by the detection of the images of the scattered light, and thereby detecting a defect present on the sample; wherein the step of detecting the scattered light image in the plural directions is performed through oval shaped lenses in which elevation angles of the optical axes thereof are different from each other, within one plane perpendicular to a plane formed by the normal to the surface of the table on which to mount the sample and the longitudinal direction of the linear region irradiated with the irradiation light.
Abstract:
Systems and methods analyzing body fluids such as blood and bone marrow are disclosed. The systems and methods may utilize an improved technique for applying a monolayer of cells to a slide to generate a substantially uniform distribution of cells on the slide. Additionally aspects of the invention also relate to systems and methods for utilizing multi color microscopy for improving the quality of images captured by a light receiving device.
Abstract:
A spectrophotometer includes: a sample-chamber lid capable of opening and closing an opening portion of a sample chamber for setting a sample and a reference sample; and sample-chamber lid opening-closing detecting means for detecting an opening-closing state of the sample-chamber lid, and the spectrophotometer is capable of controlling a measurement of a xenon flash tube as a light source, a spectroscope, a detector, an amplifier, an AD converter, a processor, a storage device, and a data display part. In the spectrophotometer, the light source is turned on after a state of the lid changing from an opening state to a closing state is detected in a sample-setting instruction state by the sample-chamber lid opening-closing detecting means; absorbancy, transmissivity, reflectivity, a sample-side energy value, or a reference-side energy value is measured; and a measurement result is displayed on the data display part.
Abstract:
An oxygen sensing system including an oxygen sensor, a microprocessor and one or more additional sensors for sensing parameters associated with the environment or with the oxygen sensor, accounts for one or more sensed conditions when calculating oxygen levels. The one or more sensors may sense conditions associated with environmental effects or effects of use that may cause the oxygen sensor to degrade over usage or over time. A baseline amplification and measurement circuit coupled to the oxygen sensor may enable the sensor to operate less frequently or for shorter periods of time, thereby increasing the life span, calibration hold time of the sensor, and reducing power requirements.
Abstract:
The present disclosure is directed to a method of tool matching that employs an auto-learning feedback loop to update a library of key parameters. According to the method, measurements are performed on a control wafer to collect a set of parameters associated with the process/analysis tool that is being matched. When deviated parameters correlate to a correctable tool condition (i.e. a tool matching event), the parameters are added to the library of key parameters. These key or critical parameters may be monitored on a more frequent basis to identify deviations that have a strong likelihood of matching with a correctable tool condition. The tool matching methodology advantageously allows for monitoring of an automatically updated list of key parameters instead of needing to look at the full set of parameters collected from a control wafer each time. As such, tool matching can be performed on a more frequent basis.
Abstract:
A diagnostic assay system including a test device and a scanning device are described. In one implementation, the scanning device includes a source of electromagnetic radiation, an optics assembly, a detector, and a microprocessor disposed within a chassis. The test device and scanning device may be configured to be movable relative to each other during operation of the scanning device.
Abstract:
Embodiments of the present invention are directed to imaging technologies, and, in particular, to an imaging system that detects relatively weak signals, over time, and that uses the detected signals to determine the positions of signal emitters. Particular embodiments of the present invention are directed to methods and systems for imaging fluorophore-labeled samples in order to produce images of the sample at resolutions significantly greater than the diffraction-limited resolution associated with optical microscopy. Embodiments of the present invention employ overlapping-emitter-image disambiguation to allow data to be collected from densely arranged emitters, which significantly decreases the data-collection time for producing intermediate images as well as the number of intermediate images needed to computationally construct high-resolution final images. Additional embodiments of the present invention employ hierarchical image-processing techniques to further resolve and interpret disambiguated images.