Abstract:
Controlling total emission current of an electron emitting construct in an x-ray emitting device by providing a cathode, providing multiple active areas each active area having a gated cone electron source, including multiple emitter tips arranged in an array, a gate electrode, and a gate interconnect lead connected to the gate electrode, providing an x-ray emitting construct comprising an anode, the anode being an x-ray target, situating the x-ray emitting construct facing the active areas face each other, selecting a set of active areas, and activating selected active areas by conductively connecting a voltage source to their associated the gate electrode interconnect lead.
Abstract:
An X-ray tube comprises a vacuum vessel; a cathode and an anode fixedly disposed inside the vacuum vessel; and a rotary mechanism that rotates the vacuum vessel. The cathode is disposed on the circumference with the rotary shaft of the rotary mechanism as its center and includes a plurality of cathode parts that can individually be turned ON/OFF. The anode includes parts opposite to the plurality of cathode parts, respectively.
Abstract:
The present invention generally relates to an x-ray source and specifically to an x-ray source suitable for large area x-ray generation. The invention also relates to a system comprising such an x-ray source.
Abstract:
The present application provides a curved surface array distributed x-ray apparatus, characterized in that, it comprises: a vacuum box which is sealed at its periphery, and the interior thereof is high vacuum; a plurality of electron transmitting units arranged on the wall of the vacuum box in multiple rows along the direction of the axis of the curved surface in the curved surface facing the axis; an anode made of metal and arranged in the axis in the vacuum box which comprises an anode pipe and an anode target surface; a power supply and control system having a high voltage power supply connected to the anode, a filament power supply connected to each of the plurality of the electron transmitting units, a grid-controlled apparatus connected to each of the plurality of electron transmitting units, a control system for controlling each power supply.
Abstract:
An imaging module includes a plurality of cathodes and respective gates, each cathode configured to generate a separate beam of electrons directed across a vacuum chamber and each gate matched to at least one respective cathode to enable and disable each separate beam of electrons from being directed across the vacuum chamber. A target anode is fixed within the vacuum chamber and arranged to receive the separate beam of electrons from each of the plurality of cathodes and, therefrom, generate a beam of x-rays. A deflection system is arranged between the plurality of cathodes and the target anode to generate a variable magnetic field to control a path followed by each of the separate beams of electrons to the target anode.
Abstract:
An X-ray tube includes a cathode, an anode, and a deflection device. The cathode and the anode generate an electron beam that is directed toward a target area of the anode to generate X-ray radiation through electrons of the electron beam impinging the target area. The deflection device controls the electron beam such that the electrons hit the anode at different focal spot positions. The deflection device provides gradual deflection for a stepless transition between monoscopic viewing and stereoscopic viewing. For monoscopic viewing, the X-ray radiation is generated from a single focal spot position. For stereoscopic viewing, the X-ray radiation is generated from two focal spot positions spaced apart in a first stereo-direction transverse to a viewing direction. The deflection device provides gradual deflection for a stereo focal spot position in a second stereo-direction, which is transverse to the first stereo-direction and the viewing direction.
Abstract:
There is provided an image processing apparatus including a processing unit configured to superimpose a plurality of X-ray images that are based on X-ray detection data representing detection results obtained by detecting a plurality of times in a time-division manner parallel beam X-rays output from a ray source including a plurality of X-ray sources that output parallel beam X-rays.
Abstract:
A multi-source radiation generator in which plural radiation sources are arranged in series includes a control unit that controls a dose of radiation emitted from each of the radiation sources depending on positions of the radiation sources, and reduces variation in a radiation dose resulting from differences in positions of the radiation sources by changing an irradiation time, an anodic current value of each of the radiation sources depending on a distance from each of the radiation sources to a subject.
Abstract:
Disclosed is an X-ray tube that has a simple configuration and is capable of irradiating multiple different X-rays while switching them at a high rate, as well as an X-ray CT device using the X-ray tube. The X-ray tube comprises first and second electron generators, a deflection means, and a target. The deflection means switches the direction in which first and second electron beams are transmitted between first and second directions. The target comprises first, second, third, and fourth surfaces. The first surface receives a first electron beam transmitted toward the first direction and irradiates a first X-ray toward the irradiation field. The second surface receives a second electron beam transmitted toward the first direction and irradiates a second X-ray toward a direction different from the irradiation field. The third surface receives a first electron beam transmitted toward the second direction and irradiates the first X-ray toward a direction different from the predetermined irradiation field. The fourth surface receives a second electron beam transmitted in the second direction and irradiates the second X-ray toward the irradiation field.
Abstract:
This invention relates to an apparatus producing distributed X-ray, and in particular to a cathode control multi-cathode distributed X-ray apparatus, which produces X-ray that changes focal position in a predetermined order by arranging multiple independent hot cathodes and controlling cathodes in an X-ray source device, and a CT device having said X-ray apparatus.