Abstract:
A communication system which superposes and transfers a wireless multicarrier signal including a plurality of subcarriers is provided with: a transmitting device which performs allocation of predetermined data generated based on transmission data to both a non-superposed band which is a frequency band in which no interference signal is present and a superposed band which is a frequency band in which the interference signal is present, or to the non-superposed band while giving a higher priority to the non-superposed band, and generates and transmits the multicarrier signal based on the allocation; and a receiving device which receives the multicarrier signal transmitted from the transmitting device.
Abstract:
A method and apparatus for allocating subcarriers in an orthogonal frequency division multiple access (OFDMA) system is described. In one embodiment, the method comprises allocating at least one diversity cluster of subcarriers to a first subscriber and allocating at least one coherence cluster to a second subscriber.
Abstract:
Methods and apparatus are disclosed herein for providing incremental redundancy in a wireless communication system to aid in error recovery. One or more redundancy versions are sent on different carriers than the primary version of information to be transmitted. At the receiver end the redundancy versions may be combined using hard or soft combining techniques, including selection combining, selective soft combining or soft combining.
Abstract:
A wireless intercom having a microcontroller that is programmed to place the intercom into a power saving sleep mode unless actively receiving or transmitting signals. The microcontroller of the intercom is interconnected to a transceiver for sending and receiving digital data packets, and to a codec for converting the digital packets to analog sound signals, and vice versa. The intercom receives digital transmission of data over a first channel and then corrects any errors in the digital data using a retransmission of the digital data over a second channel that is sufficiently spaced apart from the first channel to avoid the possibility of interference affecting both the first and second channels.
Abstract:
Techniques for header encoding include encoding a plurality of bits using a forward error correction code, generating an FEC codeword comprising a plurality of encoded bits, and concatenating a first copy of the FEC codeword with a second copy of the FEC codeword, wherein the concatenating comprises cyclically shifting by two bits the second concatenated copy of the FEC codeword relative to the first concatenated copy of the FEC codeword, wherein the encoded bits of the first and second copies of the FEC codewords are modulated on at least one OFDM symbol. techniques for header decoding include receiving a plurality of encoded bits comprising at least two concatenated copies of an FEC codeword, decoding a first copy of the FEC codeword to generate a first plurality of decoded bits, and decoding a second copy of the FEC codeword to generate a second plurality of decoded bits.
Abstract:
A communication technology for allowing a mobile communication system to accommodate variable rate users, while obtaining a frequency diversity effect. A transmitter apparatus using, for transmission, transmission signals produced based on data symbols of a predetermined transmission method, comprising an FFT processing part for converting the data symbols to frequency domain data; an interleaver for sorting the frequency domain data; and an IFFT processing part for converting the sorted frequency domain data to a time domain signal; wherein the FFT processing part subjects Q received data symbols to Q-point FFT processing, the interleaver produces N data from Q data outputted from the FFT processing part (where N>Q), and the IFFT processing part subjects the N data outputted from the interleaver to N-point IFFT processing.
Abstract:
A method (300) for performing dual carrier modulation (DCM) precoding. The method comprises generating data sub-blocks (S320), independently interleaving the sub-blocks (S330), generating bit vectors by grouping bits of the interleaved sub-blocks (S350), mapping the bit vectors into data symbols (S360), and precoding the data symbols using a precoding matrix to generate precoded symbols (S370).
Abstract:
A method for allocating, by a telecommunication device, at least first and second channel elements of a group of channel elements of a channel resource to a destination. The telecommunication device: selects, for the first channel element, a first randomization function according to the position of the first channel element within the group of channel elements and according to the destination; selects, for the second channel element, a second randomization function according to the position of the second channel element within the group of channel elements and according to the destination; processes the data to be included in the first channel element by the first randomization function and processes the data to be included in the first channel element by the second randomization function; and transfers the processed data.
Abstract:
A communication device carries out communication using N number of communication channels, where N is an integer not less than 2. The communication device includes interleavers that shuffle a data series, which is meant to be transmitted over the N number of communication channels, in at least two directions from among a time direction, a space direction, and a frequency direction, and deinterleavers that shuffle the data series back to obtain the original data series.
Abstract:
A base station allowing mobile stations to efficiently remove interference signals. In this base station (100), an encoding part (101) performs an error correction encoding of transport data to generate a bit sequence comprising systematic bits and parity bits; a repetition part (102) repeats, as a repetition subject, only the parity bits out of the plurality of bits included in the bit sequence, which is generated by the encoding part (101), so as to perform a rate matching; a modulating part (103) modulates, after the repetition, the bit sequence to generate symbols; an S/P part (104) parallel converts the symbols serially inputted from the modulating part (103) and then outputs them to an IFFT part (105); and the IFFT part (105) performs an IFFT processing of the symbols inputted from the S/P part (104) and then maps them onto subcarriers in accordance with a predetermined mapping pattern, thereby generating OFDM symbols.