Abstract:
Disclosed are methods of manufacturing electronic devices, particularly integrated circuits. Such methods include the use of low dielectric constant material prepared by using a removable porogen material.
Abstract:
Power and ground planes used in Printed Circuit Boards (PCBs) having porous, conductive materials allow liquids (e.g., water and/or other solvents) to pass through the power and ground planes, thus decreasing failures in PCBs (or PCBs used as laminate chip carriers) caused by cathodic/anodic filament growth and delamination of insulators. Porous conductive materials suitable for use in PCBs may be formed by using metal-coated organic cloths (such as polyester or liquid crystal polymers) or fabrics (such as those made from carbon/graphite or glass fibers), using metal wire mesh instead of metal sheets, using sintered metal, or making metal sheets porous by forming an array of holes in the metal sheets. Fabrics and mesh may be woven or random. If an array of holes is formed in a metal sheet, such an array may be formed with no additional processing steps than are performed using conventional PCB assembly methods.
Abstract:
A manufacturing method of a circuit board comprises the steps of: (a) feeding a printing stage having a porous member comprising a porous plate and a porous sheet, the porous sheet is composed of 90 wt % to 98 wt % of cellulose; (b) placing a plate for the circuit board having a pierced hole above the porous member; and (c) filling a conductive material in the pierced hole from an upper side of the plate for circuit board by sucking the porous member at a prescribed vacuum pressure from a back of the porous member.
Abstract:
A heat dissipating flexible or resilient standoff is mechanically clamped between an electronic module and substrate, such as, PCB. The clamping arrangement comprises a heat sink compressing a thermally conductive flexible interface pad over the upper surface of the electronic module by way of mechanical linkage to the PCB. The heat dissipating flexible standoff provides a force opposing the compression force to thereby reduce stress on solder ball connections between electronic module and PCB. Thermally conductive flexible standoffs in the form of spring arrangements, such as a wire mesh, act to provide heat dissipation by both thermal conduction and thermal convection. A thermally conductive flexible polymer pad and a layer of porous metal foam may also act as thermally conductive standoffs.
Abstract:
Through holes formed in an electrical insulating substrate having adhesive layers on its both surfaces are filled with a conductor. Then, supporting bases having wiring layers with a predetermined pattern are laminated on both the surfaces of the electrical insulating substrate, which are then heated and pressurized. After that, the supporting bases are removed, thus obtaining a circuit board in which the wiring layers have been embedded in the adhesive layers. The conductor within the through holes are compressed sufficiently, thus forming minute via holes with high reliability.
Abstract:
Disclosed is a method for manufacturing a composite member comprising a porous substrate, a via, and a wiring. The method comprises exposing a first region and a second region in the porous substrate to a exposure beam through a mask, the second region exposed by the exposure beam not more than 50% of the exposure of the first region, the exposure beam having the wavelength that an average size of voids of the porous substrate is, as expressed by a radius of gyration, {fraction (1/20)} to 10 times, and forming the via and the wiring by infiltrating a conductive material into the first region and the second region respectively.
Abstract:
A wiring assembly for a plastic intake manifold mounted to an internal combustion engine of a motor vehicle includes a flexible circuit assembly disposed within foam covering the intake manifold. The flexible circuit assembly provides for electrical communication between a controller and a plurality of electrical devices. In one embodiment the electrical devices are integral to the flexible circuit assembly to create a flexible circuit/electrical device assembly forming a single replaceable unit. In another embodiment, multiple flexible circuits are sandwiched between layers of foam, with each flexible circuit separated from the others by layers of foam. Each of the multiple flexible circuits attaches to different types electrical devices or sensors. The invention also provides for a decorative skin disposed over the layers of foam that may include a printed design to eliminate the need for an additional decorative engine cover.
Abstract:
The present invention provides a method of manufacturing a wiring board, including the steps of forming a through hole on a prepreg having a releasing resin film on at least one of its surfaces, the prepreg being obtained by impregnating a porous film having a thickness of 5 to 90 nullm and a porosity of 30 to 98% with a half cured thermosetting resin, filling the through hole with a conductive paste containing a conductive filler, peeling the resin film, laminating a metal foil on a surface from which the resin film is peeled, and heating and pressurizing the laminated product. Moreover, the present invention provides a wiring board including an insulating layer obtained by impregnating a porous film having a thickness of 5 to 90 nullm and a porosity of 30 to 98% with a thermosetting resin and curing them, and a conductive connection structure between wiring layers in which a through hole provided on the insulating layer is filled with a conductive paste, wherein the conductive connection structure has the conductive filler at only a boundary surface with the porous film and in an inner part thereof.
Abstract:
A process wherein a low viscosity, metal-containing paste is screened onto a ceramic greensheet and then sets up to increase its viscosity. In one method, the low viscosity is caused by excess solvent which is then blotted or otherwise removed so that the viscosity of the paste is increased. In an alternative method, the low viscosity paste contains a cross-linking agent which causes the paste to increase its viscosity after screening.
Abstract:
Solder balls, such as, low melt C4 solder balls undergo volume expansion during reflow. Where the solder balls are encapsulated, expansion pressure can cause damage to device integrity. A volume expansion region in the semiconductor chip substrate beneath each of the solder balls accommodates volume expansion. Air-cushioned diaphgrams, deformable materials and non-wettable surfaces may be used to permit return of the solder during cooling to its original site. A porous medium with voids sufficient to accommodate expansion may also be used.