Abstract:
In order to reduce noise propagating from a digital signal circuit to an analog signal circuit, a multilayer printed circuit board includes a first digital signal circuit formed in a first region of a front surface, a first analog signal circuit formed in a second region of the front surface, a second digital signal circuit formed at a back surface corresponding to the first region, a second analog signal circuit formed at the back surface corresponding to the second region; an analog ground circuit formed between the front surface and the back surface to ground the first analog signal circuit and the second analog signal circuit, and a first digital ground circuit arranged between the first digital signal circuit and the analog ground circuit and a second digital ground circuit arranged between the second digital signal circuit and the analog ground circuit to ground the first digital signal circuit and the second digital signal circuit.
Abstract:
A method of manufacturing an integrated circuit package system including: providing a circuit board having an interconnect thereon; mounting a first device offset on the circuit board; and applying a first encapsulant of a first thickness over the first device, the first encapsulant of a second thickness thinner than the first thickness over the remainder of the circuit board with the interconnect exposed, or a second encapsulant of a third thickness over a second device on an opposite surface of the circuit board and differently offset from the first device.
Abstract:
A method of manufacturing a circuit board which may include the steps of forming a circuit board with horizontal and vertical fiberglass fibers, rotating the circuit board, and cutting the circuit board so that the horizontal and vertical fiberglass fibers form a non-right angle with a cut line of the circuit board. The circuit board may have a plurality of conductive traces located thereon which pass by areas of higher fiberglass-to-resin material and lower fiberglass-to-resin material to assist in reducing differential to common mode conversion between signals in the plurality of conducive traces.
Abstract:
An optical transceiver of the present invention comprising an OSA, a circuit board, and a flexible substrate connecting these, in which the flexible substrate has high-speed signal lines and other lines other than the high speed signal lines provided separated from each other on the same surface, a ground layer placed apart and opposite these, and a resistive layer placed apart and opposite the high-speed signal lines, the other lines and the ground layer. High-speed signal and the resistive layer are opposite at least a part of the other lines.
Abstract:
A wireless module is configurable by a user to operate in different modes as a transmitter, receiver, transceiver, and repeater. A method of transmitting and receiving data while substantially reducing or eliminating interference from competing frequency bands, including Wi-Fi systems, as well as a method of transmitting data with a high degree of certainty without requiring an acknowledgement receipt, negotiation, or hand-shaking from a down line transceiver, receiver and/or repeater are disclosed.
Abstract:
A substrate structure whereby a resin part for coating a plurality of electronic components by one operation is given a shielding property and the mounting strength of electronic components with respect to the substrate is secured and an electronic device including the substrate structure are provided.A substrate structure 10 includes a substrate 11, a plurality of electronic components 12 mounted along the substrate 11, and a resin part 13 coating each electronic component 12 with a resin 18 while kept in close contact with the substrate 11. The substrate structure 10 includes a frame body 15 surrounding each electronic component 12 while kept in close contact with the substrate 11 and a lid part 17 closing an opening 16 in the frame body 15, and a resin 18 is filled inside the frame body 15.
Abstract:
The present invention relates to a method of manufacturing a printed circuit board using an imprinting process, in which a pattern having a large area can be uniformly formed using a plurality of molds, and the plurality of molds is sequentially removed, thereby solving problems occurring in release of the molds from an insulating layer.
Abstract:
A component-embedded module includes a module substrate having wiring electrodes on the upper surface thereof, first circuit components mounted on the wiring electrodes, a sub-module disposed on an area on which no wiring electrodes are provided, and an insulating resin layer provided on substantially the entire upper surface of the module substrate such that the insulating resin layer covers at least a portion of the first circuit components and sub-module. The second circuit components including an integrated circuit element are mounted on the sub-module or embedded therein. Via conductors are provided through the module substrate from the lower surface thereof and are directly coupled to terminal electrodes on the lower surface of the sub-module. By using a substrate having a wiring greater accuracy than that of the module substrate, a reliable component-embedded module is obtained.
Abstract:
An exemplary printed circuit board includes a power plane, and a ground plane. The power plane includes two power modules, and an insulating medium for insulating the two power modules from each other. The ground plane is insulated from the power plane, a plurality of slots is defined in the ground plane and located close to facing edges of the two power modules, and the slots are arranged in rows along the facing edges of the two power modules.
Abstract:
Provided is a high-voltage power supply including a board having at least one bent portion separating a first region of the board from a second region of the board, the first region not being coplanar with the second region of the board; a first circuit, on the first region of the board, generating a second voltage according to a first voltage; and a second circuit, on the second region of the board, amplifying the second voltage and then rectifying the amplified second voltage.