Abstract:
A thin, lightweight retention mechanism with a spring force holds an integrated circuit package to a circuit board. The retention mechanism consists of a pressure plate, a backing plate, and a fastening means for applying a deforming force to the plates, such as screws and nuts. The plates are paraboloid or dish-shaped and made of an elastically deformable material, such as steel. The fastening means simultaneously applies deforming forces to the peripheries of the plates to create a continuous spring force to effect electrical continuity between the integrated circuit package and the circuit board. In addition, a method of testing the retention mechanism and a method of assembling the retention mechanism are disclosed.
Abstract:
A method includes mounting an electronic component to a circuit board. Solder paste is applied to a board pad of the circuit board and a terminal pad of an electrical component is aligned with the board pad. The terminal includes a pad feature and a pad base. The solder paste is liquefied to cause the solder paste to flow along the pad feature. Then the solder paste is cooled to form a solder joint. The solder joint bonds the board pad and the pad base and forms a connection between the circuit board and the electrical component. Because this solder joint is subject to reduced stress at interface junctures of the solder joint, the solder joint is more resilient than conventional solder joints.
Abstract:
Surface-mount, solder-down sockets are described which permit electronic components such as semiconductor packages to be releasably mounted to a circuit board. Generally, the socket includes resilient contact structures extending from a top surface of a support substrate, and solder-ball (or other suitable) contact structures disposed on a bottom surface of the support substrate. Composite interconnection elements are described for use as the resilient contact structures disposed atop the support substrate. In use, the support substrate is soldered down onto the circuit board, the contact structures on the bottom surface of the support substrate contacting corresponding contact areas on the circuit board. In any suitable manner, selected ones of the resilient contact structures atop the support substrate are connected, via the support substrate, to corresponding ones of the contact structures on the bottom surface of the support substrate.
Abstract:
A self supported underfill film adhesively bonds surface mount integrated circuit packages to a printed circuit board. The printed circuit board has conductive traces and exposed conductive pads on the surface. Solder paste is printed on the conductive pads, and one or more additional solder paste deposits are printed in an area outside the conductive pads to serve as tack pads for a film adhesive. The film adhesive is strategically positioned on the printed circuit board over the tack pads and near the conductive pads, and the surface mount integrated circuit package is then placed on the board so that the conductive pads on the package align with the conductive pads on the board. The film adhesive softens when the package is soldered to the board, and the film ultimately serves as an underfill to increase the mechanical integrity of the solder joints.
Abstract:
An apparatus and method for force mounting semiconductor packages onto printed circuit boards without the use of solder. The apparatus includes a substrate, a first integrated circuit die mounted onto the substrate, a housing configured to house the first integrated circuit die mounted onto the substrate, and a force mechanism configured to force mount the housing including the integrated circuit die and substrate onto a printed circuit board. The method includes mounting a first integrated circuit die onto a first surface of a substrate, housing the first integrated circuit die mounted onto the substrate in a housing, and using a force mechanism to force mount the housing including the first integrated circuit die mounted on the substrate onto a printed circuit board. According to various embodiments, the force mechanism includes one of the following types of force mechanisms clamps, screws, bolts, adhesives, epoxy, or Instrument housings or heat stakes.
Abstract:
Contact structures are formed by building a core structure on a substrate and over coating the core structure with a material that is harder or has a greater yield strength than the material of the core structure. The core structure may be formed by attaching a wire to the substrate and spooling the wire out from a spool. While spooling the wire out, the spool may be moved to impart a desired shape to the wire. The wire is severed from the spool and over coated. As an alternative, the wire is not over coated. The substrate may be an electronic device, such as a semiconductor die.
Abstract:
In a probe card assembly, a series of probe elements can be arrayed on a silicon space transformer. The silicon space transformer can be fabricated with an array of primary contacts in a very tight pitch, comparable to the pitch of a semiconductor device. One preferred primary contact is a resilient spring contact. Conductive elements in the space transformer are routed to second contacts at a more relaxed pitch. In one preferred embodiment, the second contacts are suitable for directly attaching a ribbon cable, which in turn can be connected to provide selective connection to each primary contact. The silicon space transformer is mounted in a fixture that provides for resilient connection to a wafer or device to be tested. This fixture can be adjusted to planarize the primary contacts with the plane of a support probe card board.
Abstract:
Spring contact elements are attached to terminals of an electronic component, which may be a semiconductor die. The spring contact elements may comprise a flexible precursor element. The precursor element may be over coated with a resilient material. The spring contact elements may be elongate and attached to the terminals at one end. The other end of the spring contacts may be spaced away from the electronic component.
Abstract:
An apparatus is provided for packaging a laminated capacitor made to have a low ESL value and is used for a decoupling capacitor to be connected to a power supply circuit for a MPU chip providing a MPU. The laminated capacitor is accommodated within a cavity provided on a wiring board. The capacitor includes a plurality of first external terminal electrodes connected to first internal electrodes via a plurality of first feedthrough conductors and a plurality of second external terminal electrodes connected to second internal electrodes via a plurality of second feedthrough conductors. The first external terminal electrodes provided on a first major surface of a capacitor body are connected to via-hole conductors at the hot side for the power source within a substrate, and the second external terminal electrodes provided on first and second major surfaces are connected to grounding via-hole conductors and a mother board within the substrate.
Abstract:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150null C., and can be completed in less than 60 minutes.