Abstract:
In one embodiment, a diagnostic system for biological samples is disclosed. The diagnostic system includes a diagnostic instrument, and a portable electronic device. The diagnostic instrument has a reference color bar and a plurality of chemical test pads to receive a biological sample. The portable electronic device includes a digital camera to capture a digital image of the diagnostic instrument in uncontrolled lightning environments, a sensor to capture illuminance of a surface of the diagnostic instrument, a processor coupled to the digital camera and sensor to receive the digital image and the illuminance, and a storage device coupled to the processor. The storage device stores instructions for execution by the processor to process the digital image and the illuminance, to normalize colors of the plurality of chemical test pads and determine diagnostic test results in response to quantification of color changes in the chemical test pads.
Abstract:
An illustrative optical measurement system includes a light source configured to emit a light pulse directed at a target. The optical measurement system further includes a control circuit configured to drive the light source with a current pulse comprising a non-linear rise, and a decline from a maximum output to zero having a duration within a threshold percentage of a total pulse duration of the current pulse.
Abstract:
Techniques for low power gunshot sensor testing are disclosed. An acoustic generator and an infrared generator are disposed in a housing. The housing encompasses the acoustic generator and the infrared generator. The housing covers the gunshot sensor. The acoustic generator and the infrared generator are used for testing a gunshot sensor. The infrared generator and the acoustic generator are coupled to an activation circuit. A switch is coupled to the acoustic generator and the infrared generator. The switch provides activation control of the acoustic generator and the infrared generator. The infrared generator includes a light source operating in the near-infrared (NIR) band. The light source operating in the NIR band provides testing for a gunshot muzzle flash sensor. The infrared generator includes a light source operating in the mid-infrared (MIR) band. The light source operating in the MIR band provides testing for a passive infrared (PIR) sensor.
Abstract:
A device for measuring the performance of an optical detector includes a cryostat, a holder capable of receiving the detector, secured to the inside of the cryostat, and means for measuring the performance of the detector. It also includes a screen arranged around the holder capable of limiting the radiation likely to reach the holder in a wavelength range of the detector, and a single-mode optical fiber in the wavelength range of the detector, inserted in an opening of the cryostat. The device further comprises at least one luminous flux generation module that incorporates a fibered source capable of generating the luminous flux in the optical fiber.
Abstract:
According to an aspect, a detection device includes: a planar detection device including photodetection elements; point light sources provided correspondingly to the photodetection elements; a light directivity control element disposed between the point light sources and the photodetection elements; and a detection circuit electrically coupled to the photodetection elements. Each point light source corresponds to at least one of the photodetection elements. In a light amount setting mode, the point light sources are lit up at different light amounts; the photodetection elements output sensor values corresponding to the different light amounts; the sensor values that are detected are compared with a preset target sensor value; and light amounts for detection of the point light sources are set. In a detection mode, the point light sources are lit up at the set light amounts for detection; and the photodetection elements output sensor values corresponding to the light amounts for detection.
Abstract:
A photometry device can include a first to emit light to a target in response to a first current through the first LED, a second LED to emit light to the target in response to a second current through the second LED, and an inductor, coupled to the first and second LEDs, to store energy associated with at least one of the first and second currents.
Abstract:
Disclosed is a blue to white light conversion device, comprising: a light conversion subassembly comprising at least one light conversion layer, sandwiched between two light transmitting members, wherein the light conversion layer comprises a light conversion material comprising phosphors and/or quantum dots; at least one light diffusing subassembly neighboring the light conversion subassembly; and a top frame and a bottom frame surrounding the light diffusing subassembly and light conversion subassembly, respectively.
Abstract:
A device for generating light pulses for characterization, standardization and/or calibration of photodetectors, preferably within a flow cytometer or microscope is disclosed. The device includes emission light sources which are driven with predetermined waveform to emit light pulses. A feedback mechanism based on the provision of separate, series-connected control light sources whose emission is detected by a feedback detector is included. The device may include one or more emission groups of circularly arranged, multi-color emission light sources. To provide different intensity levels, the emission light sources or emission groups can be coupled into a light guide with different efficiencies. Uses of the device and systems or kits including the device is also provided.