Abstract:
In a mechanical quantity measuring device (1) having a sensor chip (2) which outputs a sense output (S) corresponding to a mechanical quantity acting on the object to be measured (4), and a flexible wiring board (3) which supports the sensor chip (2) and has a wire (6) to lead out the sense output (S) to outside, and in which in measuring the mechanical quantity, the sensor chip (2) and the flexible wiring board (3) are attached to the object to be measured (4), a cutout (5) is provided on the flexible wiring board (3) near the sensor chip (2) and on the side where the wire (6) is arranged for the sensor chip (2). Thus, change in the sense output (S) with time can be restrained.
Abstract:
A semiconductor device manufacturing method includes the steps of forming a silicate film by performing a first step of forming a metal oxide film on a silicon substrate, and a second step of inducing a solid phase reaction between the metal oxide film and a surface of the silicon substrate by heat treatment, and forming a high dielectric constant insulating film on the silicate film.
Abstract:
A magnetic tape apparatus includes a feeding unit for feeding a magnetic tape; a take-up unit for taking up the magnetic tape, a magnetic head disposed the downstream of the feeding unit and the upstream of the winding unit, in a traveling path of the magnetic tape from the feeding unit to the take-up unit, and having the moving magnetic tape abut to the magnetic head; a fixed guide unit disposed adjacent to the magnetic head at least in the upstream on downstream of the traveling direction of the magnetic tape traveling on the traveling path toward the magnetic head and guiding the magnetic tape to the traveling path by abutting to the magnetic tape; and a controlling unit disposed on the fixed guide unit for controlling the movement of the magnetic tape in the tape width direction. On a contact surface which abuts on the magnetic tape in the fixed guide unit, there is provided a space for excluding the air lying between the moving magnetic tape and the contact surface.
Abstract:
The present invention has an object of providing a substrate processing apparatus and a semiconductor device manufacturing method that can prevent adverse effects on electrical characteristics and provide a thinner EOT.A semiconductor device manufacturing method comprises the steps of: forming a metal oxide film on a silicon substrate, and forming a silicate film by inducing a solid phase reaction between the metal oxide film and the silicon substrate by heat treatment, and forming a high dielectric constant insulating film on the silicate film.
Abstract:
An underlying layer ALY of GaN is formed on a sapphire substrate SSB; a transfer layer TLY of GaN with a bump and dip shaped surface is formed on the underlying layer ALY; a light absorption layer BLY is formed on the bump and dip shaped surface of the transfer layer TLY; and a grown layer 4 of a planarization layer CLY and a structured light-emitting layer DLY having at least an active layer are formed on the light absorption layer BLY. A support substrate 2 is provided on the grown layer 4. The backside of the sapphire substrate SSB is irradiated with light of the second harmonic of YAG laser (wavelength 532 nm) to decompose the light absorption layer BLY and delaminate the sapphire substrate SSB, thereby allowing the planarization layer CLY of a bump and dip shaped surface to be exposed as a light extraction face.
Abstract:
The object of the invention is to facilitate the entry of a new type of sensor node and the adoption of a new protocol in the existing sensor network system effectively utilizing limited resources of radiocommunication. To achieve the object, the following are provided. A sensor node has a radiocommunication unit that transmits a measured value sensed by a sensor and an identifier of a sensor node as binary measured data. A base station has a radiocommunication controller that receives the measured data from the sensor node, a wire communication controller that transmits the received measured data to a server, a conversion definition information selector that selects conversion definition information corresponding to the identifier included in the measured data out of preset plural conversion definition information and a conversion engine that converts the binary measured data to measured data in a text format based upon the selected conversion definition information. The server has a database that stores the measured data in the text format received via a wired network.
Abstract:
In an electric characteristic testing process corresponding to a process of the semiconductor apparatus manufacturing processes, in order to test a large area of the electrode pad of the body to be tested in a lump, an electric characteristic testing is performed by pressing a testing structure provided with electrically independent projections having a number equal to a number of conductor portions to be tested formed on an area to be tested of a body to be tested to the body to be tested.
Abstract:
A soldering machine includes a solder vessel, an electromagnetic pump, and a nozzle. The solder vessel stores molten solder, and the electromagnetic pump moves the solder by generating electromagnetic force. The electromagnetic pump is submerged below the liquid surface of the solder. The nozzle ejects the solder in the solder vessel onto an object, such as a printed circuit board. Accordingly, the generated heat from the electromagnetic pump is conducted to the solder in the solder vessel, and the solder can be heated to a higher temperature than in the conventional soldering machine.
Abstract:
A semiconductor device manufacturing method includes the steps of: (a) forming a stopper layer for chemical mechanical polishing on a surface of a semiconductor substrate; (b) forming an element isolation trench in the stopper layer and the semiconductor substrate; (c) depositing a nitride film covering an inner surface of the trench; (d) depositing a first oxide film through high density plasma CVD, the first oxide film burying at least a lower portion of the trench deposited with the nitride film; (e) washing out the first oxide film on a side wall of the trench by dilute hydrofluoric acid; (f) depositing a second oxide film by high density plasma CVD, the second oxide film burying the trench after the washing-out; and (g) removing the oxide films on the stopper layer by chemical mechanical polishing.
Abstract:
Temperature states of a clinical thermometer body and an environment are estimated by temperatures measured by a first temperature sensor integrally formed together with an infrared sensor arranged to the distal end of a probe and a second temperature sensor arranged on the bottom side of a probe holder, and processes suitable for the respective temperature states are performed. An estimation error or the reliability of an estimation value is calculated by the temperatures to notify a user of the estimation error or the reliability by an LCD or the like.