Abstract:
In accordance with an embodiment of the present invention, a semiconductor module includes a first semiconductor package having a first semiconductor die, which is disposed in a first encapsulant. An opening is disposed in the first encapsulant. A second semiconductor package including a second semiconductor die is disposed in a second encapsulant. The second semiconductor package is disposed at least partially within the opening in the first encapsulant.
Abstract:
A chip arrangement is provided, the chip arrangement, including: a carrier; at least one chip including at least one contact pad disposed over the carrier; an encapsulation material at least partially surrounding the at least one chip and the carrier; and at least one low temperature co-fired ceramic sheet disposed over a side of the carrier.
Abstract:
An assembled semiconductor device and a method of making an assembled semiconductor device are disclosed. In one embodiment the assembled device includes a carrier having a first thickness, a connection layer disposed on the carrier and a chip disposed on the connection layer, the chip having a second thickness, wherein the second thickness is larger than the first thickness.
Abstract:
The chip module includes a carrier, a semiconductor chip arranged on or embedded inside the carrier, and an insulation layer that at least partly covers a face of the carrier. The dielectric constant ∈r and the thermal conductivity λ of the insulation layer satisfy the condition λ·∈r
Abstract:
One aspect is a device including a carrier comprising a first conducting layer, a first insulating layer over the first conducting layer, and at least one first through-connection from a first face of the first insulating layer to a second face of the first insulating layer. A semiconductor chip is attached to the carrier and a second insulating layer is over the carrier and the semiconductor chip. A metal layer is over the second insulating layer. A second through-connection is through the second insulating layer electrically coupling the semiconductor chip to the metal layer. A third through-connection is through the second insulating layer electrically coupling the carrier to the metal layer.
Abstract:
A semiconductor device assembly includes a cooling system, a plurality of semiconductor packages, each including a semiconductor die and an encapsulant body, and a multi-device thermal interface interposed between the plurality of semiconductor packages and the cooling system, wherein the semiconductor packages are each configured as surface mount devices, and wherein the multi-device thermal interface thermally couples each of the semiconductor packages to the cooling system.
Abstract:
A molded semiconductor package includes: a semiconductor die embedded in a mold compound; a first heat spreader partly embedded in the mold compound and thermally coupled to a first side of the semiconductor die; and a second heat spreader partly embedded in the mold compound and thermally coupled to a second side of the semiconductor die opposite the first side. The first heat spreader includes at least one heat dissipative structure protruding from a side of the first heat spreader uncovered by the mold compound and facing away from the semiconductor die. The mold compound is configured to channel a fluid over the at least one heat dissipative structure in a direction parallel to the first side of the power semiconductor die. Corresponding methods of production and electronic assemblies are also described.
Abstract:
An arrangement is disclosed. In one example, the arrangement of a conductor and an aluminum layer soldered together comprises a substrate and the aluminum layer disposed over the substrate. The aluminum forms a first bond metal. An intermetallic compound layer is disposed over the aluminum layer. A solder layer is disposed over the intermetallic compound layer, wherein the solder comprises a low melting majority component. The conductor is disposed over the solder layer, wherein the conductor has a soldering surface which comprises a second bond metal. The intermetallic compound comprises aluminum and the second bond metal and is predominantly free of the low melting majority component.
Abstract:
A semiconductor package is disclosed. In one example, the semiconductor package includes a package body and a semiconductor component encapsulated in the package body. A cavity is formed in a bottom surface of the package body.
Abstract:
A semiconductor package is disclosed. In one example, the semiconductor package includes a chip carrier, a semiconductor chip attached to the chip carrier, an encapsulation body encapsulating the semiconductor chip, and a mounting hole configured to receive a screw for screw mounting a heatsink onto a first side of the semiconductor package. A second side of the semiconductor package opposite the first side is configured to be surface mounted to an application board.