Abstract:
A method of fabricating a micro-electrical-mechanical system (MEMS) apparatus on a substrate (10) comprises the steps of processing the substrate (10) so as to fabricate an electronic circuit (11); depositing a first electrode (15) that is operably coupled with the electronic circuit (11); depositing a membrane (16) so that it is mechanically coupled to the first electrode (15); applying a sacrificial layer (50); depositing a structural layer (18) and a second electrode (17) that is operably coupled with the electronic circuit (11) so that the sacrificial layer (50) is disposed between the membrane (16) and the structural layer (18) so as to form a preliminary structure; singulating the substrate (10); and removing the sacrificial layer (50) so as to form a MEMS structure, in which the step of singulating the substrate (10) is carried out before the step of removing the sacrificial layer (50).
Abstract:
An embodiment of a method is provided that includes providing a substrate having a frontside and a backside. A CMOS device is formed on the substrate. A MEMS device is also formed on the substrate. Forming the MEMS device includes forming a MEMS mechanical structure on the frontside of the substrate. The MEMS mechanical structure is then released. A protective layer is formed on the frontside of the substrate. The protective layer is disposed on the released MEMS mechanical structure (e.g., protects the MEMS structure). The backside of the substrate is processed while the protective layer is disposed on the MEMS mechanical structure.
Abstract:
A method for making a microelectronic device comprising at least one electromechanical component provided with a mobile structure, the method comprising the steps of: forming in at least one fine semiconducting thin layer lying on a supporting layer, at least one bar bound to a block, said bar being intended to form a mobile structure of an electromechanical component, withdrawing a portion of the supporting layer under said bar, forming at least one passivation layer based on dielectric material around said bar, forming an encapsulation layer around the bar and covering said passivation layer, the method further comprising steps of: making metal contact and/or interconnection areas, and then suppressing the encapsulation layer around said bar.
Abstract:
The process comprises the following steps:a) a first element (3) or a plurality of said first elements (3) is/are machined in a first silicon wafer (1) keeping said elements (3) joined together via material bridges (5); b) step a) is repeated with a second silicon wafer (2) in order to machine a second element (4), differing in shape from that of the first element (3), or a plurality of said second elements (4); c) the first and second elements (3, 4) or the first and second wafers (1, 2) are applied, face to face, with the aid of positioning means (6, 7); d) the assembly formed in step c) undergoes oxidation; and e) the parts (10) are separated form the wafers (1, 2). Micromechanical timepiece parts obtained according to the process.
Abstract:
The present invention provides methods of manufacturing a MEMS assembly. In one embodiment, the method includes mounting a MEMS device, such as a MEMS mirror array, on an assembly substrate, where the MEMS device has a sacrificial layer over components formed therein. The method also includes coupling an assembly lid to the assembly substrate and over the MEMS device to create an interior of the MEMS assembly housing the MEMS device, whereby the coupling maintains an opening to the interior of the MEMS assembly. Furthermore, the method includes removing the sacrificial layer through the opening. A MEMS assembly constructed according to a process of the present invention is also disclosed.
Abstract:
Provided herein is an apparatus and a method useful for manufacturing MEMS devices. An aspect of the disclosed apparatus provides a substrate comprising an etchable material exposed to a solid-state etchant, wherein the substrate and the solid-state etchant are disposed in an etching chamber. In some embodiments, the solid state etchant is moved into close proximity to the substrate. In other embodiments, a configurable partition is between the substrate and the solid-state etchant is opened. The solid-state etchant forms a gas-phase etchant suitable for etching the etchable material. In some preferred embodiments, the solid-state etchant is solid xenon difluoride. The apparatus and method are advantageously used in performing a release etch in the fabrication of optical modulators.
Abstract:
A method of depositing polymer thin films on a MEMS device having a wafer stack includes depositing one or more protection films on a polymer thin film layer on the wafer stack, fabricating the MEMS device, and removing the one or more protection films.
Abstract:
Various embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer. In other embodiments, electrochemically fabricated structures are formed on dielectric substrates.
Abstract:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilcon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.
Abstract:
A method for removing sacrificial layers during the process of fabricating micro-mechanical devices with a solution of super-critical carbon dioxide. A mixture of super-critical carbon dioxide with other solvents, co-solvents and surfactants is used during the process to remove sacrificial layers. The disclosed method has many advantages over the prior art, including a reduction of capillary forces that can damage the free-standing micro-mechanical superstructures, an absence of plasma induced damage caused by ashing operations, and a reduction in the use of environmentally sensitive chemicals. Another advantage of the disclosed process is that the swelling of the photoresist layers is minimized. The disclosed method may be used to remove sacrificial layers that were deposited during the process of fabricating micro-mechanical devices. The method is also effective to remove a protective recoat layer that is deposited over a micro-mechanical device after it has been fabricated.