Abstract:
The present invention relates to a fluid treatment system comprising: an inlet; an outlet; and a fluid treatment zone disposed between the inlet and the outlet. The fluid treatment zone has disposed therein: (i) an elongate first radiation source assembly having a first longitudinal axis, and (ii) an elongate second radiation source assembly having a second longitudinal axis. The first longitudinal axis and the second longitudinal axis are non-parallel to each other and to a direction of fluid flow through the fluid treatment zone. The present fluid treatment system has a number of advantages including: it can treat large volumes of fluid (e.g., wastewater, drinking water or the like); it requires a relatively small “footprint”; it results in a relatively lower coefficient of drag resulting in an improved hydraulic pressure loss/gradient over the length of the fluid treatment system; and it results in relatively lower (or no) forced oscillation of the radiation sources thereby obviating or mitigating of breakage of the radiation source and/or protective sleeve (if present). Other advantages are discussed in the specification.
Abstract:
A radiation source module comprising a support member, a radiation source assembly connected to the support member and a seal disposed on a first surface of the module, the seal operable to provide a substantially fluid tight seal between the first surface and a second surface which is adjacent to the first surface.
Abstract:
A system for decomposing a liquid or gaseous organic compound comprises a ultraviolet decomposition unit and an intermediate product treatment apparatus. The ultraviolet decomposition unit decomposes an organic compound contained in polluted liquid or polluted gas by irradiating ultraviolet rays whose wavelength is less than 300 nm to the polluted liquid or the polluted gas containing the organic compound. An acid electrolytic water feed pipe and an alkali electrolytic water feed pipe are respectively connected to the intermediate product treatment apparatus through valves to neutralize an intermediate product, which results from decomposition of the organic compound, for decomposition by selectively adding strong alkali electrolytic water and strong acid electrolytic water to the polluted liquid or the polluted gas containing the intermediate product.
Abstract:
An integrated flow through water sterilization device within a sanitary faucet fixture. A portion of the flow path has a plurality of ultraviolet radiation generating LED's arranged around a transparent flow conduit within the faucet. The ultraviolet radiation generating LED's effectively sterilize the water as it flows through and is dispensed by the faucet. A hydro-electric generator is driven by a water flow to the faucet upon demand and provides electrical power for the ultraviolet radiation generating LED's as water is used.
Abstract:
A method and apparatus are described for killing or inhibiting growth of undesired microorganisms using ultraviolet radiation. A vortex turbulated flow of water is established within a vertical tube through which is transmitted ultraviolet radiation. In a preferred embodiment the dwell time of water within the tube may be varied to achieve optimum exposure. The method can be used to treat water alone or to treat objects suspended in water. In a particularly preferred embodiment freshly cut pieces of fruit may be treated.
Abstract:
A system and a method for disinfecting a fluid includes a vessel with at least one passage having at least an inlet and an outlet and one or more radiation sources. The one or more radiation sources are positioned about at least a portion of a perimeter of the passage in the vessel to direct radiation into a fluid in the passage of the vessel to at least partially disinfect the fluid.
Abstract:
A device for the UV treatment of fluids flowing in a flow channel, including a plurality of cylindrical low-pressure mercury UV emitters arranged in groups in the flow channel. The longitudinal axes of the UV emitters are disposed substantially parallel to one another such that the emitters of a given group are disposed in a plane. At least one elongated sensor arrangement monitors the operating state of the emitters, and is spaced from and parallel to one of the groups of the emitters. The sensor arrangement extends essentially transverse to the longitudinal axes of the emitters of the adjacent group, and is provided with a separate UV sensor for each emitter. At least one unit connected with the sensor arrangement controls and/or regulates the emitters.
Abstract:
The invention relates to a device for disinfecting liquids by means of ultraviolet radiation in a continuous flow method, with a reactor chamber through which flow can take place and in which a number of UV radiator units is arranged, the reactor chamber being provided with a wall, which is open at two end sides, and locally surrounded by at least one pre-chamber. Advantageous flow conditions are achieved if the at least one pre-chamber is welded to the wall at a distance from the end side so that an annular intermediate space with an internal width (r) is formed between a side of the pre-chamber and the wall, and an essentially axisymmetric annular gap (d) is formed between the end side and the pre-chamber.
Abstract:
The present invention relates to a method for treating liquids, comprising the steps of irradiating a flow of air and a flow of the liquid to be treated at the same time in order to create ozone in both the air and the liquid, mixing the ozone-containing air with the liquid to be treated up-streams the liquid irradiating point, irradiating the flow of liquid containing the in-mixed ozone in order to break down the ozone in the liquid for producing free radicals.
Abstract:
The object of the invention is a double-walled chamber for the UV disinfection of liquids, preferably drinking water and/or waste water. It realizes a rectangular and/or square cross-sectional shape of the UV radiation chamber even at higher pressures, whereby the radiation chamber can moreover be provided with a thin-walled configuration and allows an optimal and close arrangement of UV radiators as compared with a round chamber. By applying the inventive idea, the known dead zones at the entrance are completely eliminated and an entrance turbulence is produced which runs simultaneously with the piston flow in the chamber.