Abstract:
A sol-gel method of preparing a powder for use in forming a glass is provided, along with methods of preparing glasses and glass fibers from the powder. The inventive method allows for the incorporation of a wide range of elements and compositions into a homogeneous glass or glass fiber that is substantially free of hydroxide groups. In addition, dopants incorporated into glasses prepared by the inventive method are uniformly distributed throughout the glass structure.
Abstract:
The present invention is a method of making a lithography photomask and photomask blank. The method of making the lithography photomask and photomask blank includes providing a silicon oxyfluoride glass tube having an OH content less than 50 ppm. The method further includes cutting the silicon oxyfluoride glass tube, flattening the silicon oxyfluoride glass tube, and forming the flattened cut silicon oxyfluoride glass tube into a photomask blank having a planar surface. The present invention includes a glass lithography mask preform. The glass lithography mask preform is a longitudinal silicon oxyfluoride glass tube that has an OH content null10 ppm, a F wt. % concentration null0.5 wt. %.
Abstract:
There is disclosed a synthetic fused silica member used at a wavelength of 200 nm or less which has a hydroxyl group-content of 1 to 50 ppm and a fluorine-content of 100 to 1000 ppm, and contains no chlorine, and has a birefringence of the synthetic fused silica member of 2 nm/cm or less. The synthetic fused silica member can be used as a synthetic fused silica substrate for photomask, or in an optical system wherein a fluorine excimer laser is used as a light source. There can be provided a synthetic fused silica member which can efficiently transmit a light having a wavelength as 200 nm or less, especially fluorine excimer laser (157 nm), and does not suffer from lowering of transmittance due to damage.
Abstract:
The present invention is a method of making a lithography photomask and photomask blank. The method of making the lithography photomask and photomask blank includes providing a silicon oxyfluoride glass tube having an OH content less than 50 ppm. The method further includes cutting the silicon oxyfluoride glass tube, flattening the silicon oxyfluoride glass tube, and forming the flattened cut silicon oxyfluoride glass tube into a photomask blank having a planar surface. The present invention includes a glass lithography mask preform. The glass lithography mask preform is a longitudinal silicon oxyfluoride glass tube that has an OH content ≦10 ppm, a F wt. % concentration ≧0.5 wt. %.
Abstract:
A process for producing synthetic quartz glass using a burner composed of a plurality of concentric nozzles involves the steps of feeding a silica-forming raw material gas and a fluorine compound gas to a reaction zone from a center nozzle, feeding oxygen gas from a second nozzle outside the center nozzle, and feeding oxygen gas and/or hydrogen gas from a third nozzle. The silica-forming raw material gas is hydrolyzed to form fine particles of silica, which particles are deposited on a rotatable substrate so as to form a porous silica matrix, which is then fused to give the quartz glass. The flow rate of the oxygen gas fed from the second nozzle and the flow rate of the raw material gas are controlled so as to provide a 1.1- to 3.5-fold stoichiometric excess of oxygen. The excess oxygen suppresses SinullSi bond formation in the quartz glass, enabling the production of synthetic quartz glass having a high transmittance in the vacuum ultraviolet region.
Abstract:
Disclosed is a method for fabricating high-purity silica glass using a sol-gel processing that includes the steps of: (a) mixing a deionized water with a fluorine compound and a dispersion agent to prepare an aqueous premix solution; (b) mixing the aqueous premix solution with a fumed silica; (c) mixing the resulting mixture to form a dispersed sol; (d) aging the sol at the ambient temperature to stabilize silica particles; and, (e) removing air voids from the sol and adding a gelation agent.
Abstract:
A sequence of process steps forms a fluorinated silicon glass (FSG) layer on a substrate. This layer is much less likely to form a haze or bubbles in the layer, and is less likely to desorb water vapor during subsequent processing steps than other FSG layers. An undoped silicon glass (USG) liner protects the substrate from corrosive attack. The USG liner and FSG layers are deposited on a relatively hot wafer surface and can fill trenches on the substrate as narrow as 0.8 &mgr;m with an aspect ratio of up to 4.5:1.
Abstract:
This invention relates to a dispersion-compensating fiber which can be drawn at a lower temperature and can further reduce optical transmission loss. This dispersion-compensating fiber comprises a core portion containing a high concentration of GeO.sub.2 and a cladding portion formed around the outer periphery of the core portion. The cladding portion comprises a first cladding containing fluorine or the like as an index reducer, a second cladding having a higher refractive index than that of the first cladding, and a third cladding which becomes a glass region substantially noncontributory to propagation of signal light. In particular, the third cladding contains a desired impurity such that the glass viscosity thereof becomes lower than that of the second cladding or pure silica cladding at a predetermined temperature.
Abstract:
A method for producing a synthetic silica glass for use with vacuum ultraviolet light comprises the steps of: (a) producing a soot preform; (b) heating the soot preform in an atmosphere containing fluorine to obtain a fluorine-doped soot preform; (c) consolidating the fluorine-doped soot preform to obtain a fluorine-doped synthetic silica glass; and (d) heating the fluorine-doped synthetic silica glass in an atmosphere containing hydrogen gas to obtain a synthetic silica glass doped with fluorine and hydrogen molecules. A synthetic silica glass having both a high transmittance and high ultraviolet light resistance with respect to light in the vacuum ultraviolet wavelength range can be produced.