Abstract:
An electromagnetic wave detector 100 comprises: a substrate 5 having a front surface and a back surface; an insulating layer 4 formed of a rare earth oxide, which is provided on the front surface of the substrate 5; a pair of electrodes 2 provided on the insulating layer 4 so as to be arranged to face each other across a gap; and a two-dimensional material layer 1 provided on the insulating layer 4 so as to be electrically connected to the pair of electrodes 2. The rare earth oxide contains a base material made of an oxide of a first rare earth element, and a second rare earth element different from the first rare earth element, which is activated in the base material.
Abstract:
A composition for ultraviolet light intensity detection comprises nematic mixed crystals, chiral additives, cholesteric liquid crystals, azobenzene monomers, photopolymerizable monomers and a photoinitiators. When preparing a film having the composition, the steps include mixing each of components of the composition and spreading out the mixture to form a pre-formed film of the mixture, and irradiating the pre-formed film by light to form a film for ultraviolet light intensity detection.
Abstract:
Presented here are devices and methods to correct ambient light measurements made in the presence of optical elements, such as the curved edge of the cover glass associated with the mobile device. In one embodiment, a film with optical properties is placed within the ambient light sensor to diffuse the high-intensity light beam coming from the optical element. In another embodiment, an aperture associated with the ambient light sensor is disposed to prevent the high-intensity light beam from entering the ambient light sensor. In another embodiment, a processor coupled to the ambient light sensor smoothes the peak associated with the high intensity light beam produced by the optical element.
Abstract:
Systems, devices and methods for calibrating or increasing the accuracy of light sensing devices. The methods can include calibrating a light sensing device with a calibration source that is adapted to mimic at least one representative spectrum.
Abstract:
An optical head for receiving an incident light is provided. The optical head comprises a reflective diffuser and a reflector disposed to face the reflective diffuser. The reflective diffuser is disposed in an optical path of the incident light and shields the reflector from the incident light. The reflective diffuser converts the incident light to scattered light having a Lambertian pattern. The reflector has an optical output section that transmits the scattered light and a reflective section that reflects the scattered light to the reflective diffuser and/or the other portions of the reflective sections. An optical system using the optical head is also provided.
Abstract:
A multifunctional infrared (IR) module is configured for multiple IR applications without an additional microcontroller to be integrated into a computing device and is able to utilize voltage control instead of current control. The multifunctional IR module includes an IR light emitting diode (LED), and an IR receiver (e.g., photodiode or phototransistor). In one embodiment, the multifunctional IR module includes a resistor that is connected to the cathode of the IR LED and the drain of a transistor, with the source of the transistor grounded. In some embodiments, the multifunctional IR module additionally includes a red LED. Various configurations of the multifunctional IR module are able to perform one or more of the following functions: IR in (receiving IR signals), IR out (generating IR signals), heart rate sensing, SpO2 (oxygen saturation) sensing, distance/proximity detection, gesture detection, LED control, and ambient light detection.
Abstract:
An optical head for receiving incident light is provided. The optical head comprises a transmissive cosine corrector and a reflector disposed to face the transmissive cosine corrector. The transmissive cosine corrector is disposed in an optical path of the incident light and shields the reflector from the incident light. The transmissive cosine corrector converts the incident light to scattered light having a Lambertian pattern. The reflector has an optical output section that transmits the scattered light and a reflective section that reflects the scattered light to the transmissive cosine corrector and/or the other portions of the reflective sections. An optical system using the optical head is also provided.
Abstract:
According to an embodiment, an ultraviolet (UV) irradiation apparatus includes a treatment tank, a UV irradiation member, a UV sensor, and an air outlet unit. The air outlet unit is connected to an air outlet hole provided at a position higher than a horizontal plane that passes through the UV sensor, and is provided to release, to the outside of the treatment tank, through the air outlet hole, air that accumulates inside the treatment tank when the treated waterlasses through the inside of the treatment tank.
Abstract:
The invention relates to a UV light sensor produced in a CMOS method, comprising a substrate that has a surface, one or more sensor elements that detect radiation and are designed in said substrate, at least one passivation layer arranged over said substrate surface, and a functional layer that is arranged over said passivation layer and designed in the form of at least one filter. The problem addressed by the invention of providing a UV light sensor which is sensitive exclusively within the UV wavelength range is solved, in terms of arrangement, by means of filters designed directly on a planar passivation layer, and stray light suppressing means around said at least one sensor element and/or around the UV light sensor. In terms of the method, the problem is solved by measuring two output signal from at least two photo diodes fitted with different filters, and by determining a mathematical relationship between the two output signals.
Abstract:
An apparatus for monitoring vacuum ultraviolet, the apparatus including a light controller including a slit, the slit to transmit plasma emission light emitted from a process chamber in which a plasma process is performed on a substrate; a light selector adjacent to the light controller, the light selector selectively to transmit light, having a predetermined wavelength band, of the plasma emission light passing through the slit; a light collector to concentrate the light selectively transmitted by the light selector; and a detector to detect the light concentrated by the light collector, the light selectively transmitted by the light selector being vacuum ultraviolet.