Abstract:
In a solar simulator for measuring the current-voltage characteristics of photovoltaic devices, it is to provide a measurement method using a solar simulator in which locative unevenness of irradiance on the test plane of the test plane side is drastically improved, not in a light source side, and a means for adjusting irradiance and the like. when an object is the photovoltaic devices Ms, and the current-voltage characteristics are measured by a solar simulator Ss equipped with a light source composed of a lamp and a reflector, and a part for setting the object to be measured, in which it is possible to dispose an irradiated test plane of the object to be measured opposite an illuminating surface of said light source, the whole test plane of said photovoltaic devices is divided imaginarily into a plurality of sections and a selected member for adjusting irradiance is disposed opposite the test plane of each imaginary sections so as to equalize or substantially to equalize the irradiance by the light source at every irradiated test plane of the sections, after which light from said light source is directed onto the test plane of the object to be measured.
Abstract:
A non-invasive emitter-photodiode sensor which is able to provide a data-stream corresponding to the actual wavelength of light emitted thereby allowing calibration of the sensor signal processing equipment and resulting in accurate measurements over a wider variation in emitter wavelength ranges.
Abstract:
A method and apparatus for genomic or proteomic research to visualize fluorescent labeled DNA, RNA or protein samples that have been separated for documentation and analysis. The apparatus includes a novel radiation source for uniformly irradiating the samples which comprises a grid constructed from a continuous, serpentine shaped ultraviolet light producing tube that is strategically formed to provide a multiplicity of side-by-side, immediately adjacent irradiating segments. In one form of the invention the apparatus also includes a first conversion plate that is carried by the housing at a location intermediate the radiation source and the sample supporting platform for converting the radiation emitted from the source to radiation at a second wavelength.
Abstract:
Briefly stated, the present invention discloses a novel device that automatically calibrates and adjusts the intensity, dosage, and other parameters of a radiation delivery system and radiation source based on selected or detected radiation delivery systems. Such radiation delivery systems include optical fiber systems, and any type of diffuser, as well as bare fiber tips. The functions of a radiation source and a calibration device are combined by storing the characteristics of a wide variety of delivery system types and brands and calibrating the radiation based on those stored characteristics. In a preferred embodiment, a calibration sheath is provided that fits over a delivery system, such as a bare fiber tip or a diffuser at the distal end of a fiber, to both protect the system during calibration and direct output radiation to a detector. In another embodiment, one or more detectors are situated on the interior surface of the calibration sheath to directly measure at least a preselected portion of the emitted radiation. Power readings are directed to a calibration subsystem from the detector or detectors, which then adjusts the emitted power to conform to desired treatment parameters. The need for different calibration devices based on the characteristics of the delivery system is alleviated.
Abstract:
Method and system are disclosed for de-embedding optical component characteristics from optical device measurements. In particular, the invention uses frequency domain averaging of the RBS on both sides of an optical component to determine one or more of its optical characteristics. Where the RBS has a slope (e.g., as in the case of a lossy fiber), a frequency domain least square fit can be used to determine the optical component characteristics. In addition, the invention uses a reference DUT to correct for variations in the frequency response of the photoreceiver. A reference interferometer is used in the invention to correct for sweep non-linearity of the TLS. The optical component characteristics are then de-embedded from optical device measurements to provide a more precise analysis of the optical device.
Abstract:
The invention describes systems and methods for calibrating a low-level light imaging system. Techniques described herein employ a light calibration device that is placed within a low level light imaging box to calibrate the system and its constituent components such as the camera and processing system. The calibration device comprises an array of low-power light supplies each having a known emission. By taking an image of each low-power light supply, and comparing the processed result with the known emission, the accuracy of the imaging system and its absolute imaging characteristics may be assessed and verified.
Abstract:
A method and apparatus for genomic or proteomic research to visualize fluorescent labeled DNA, RNA or protein samples that have been separated for documentation and analysis. The apparatus includes a novel radiation source for uniformly irradiating the samples which comprises a grid constructed from a continuous, serpentine shaped ultraviolet light producing tube that is strategically formed to provide a multiplicity of side-by-side, immediately adjacent irradiating segments. In one form of the invention the apparatus also includes a first conversion plate that is carried by the housing at a location intermediate the radiation source and the sample supporting platform for converting the radiation emitted from the source to radiation at a second wavelength.
Abstract:
The present invention provides a system and method for the diffusion of illumination from discrete light sources such that the illumination is blended and directed in one or more desired directions. The illumination system comprises a substrate having a plurality of light-emitting elements thereon which are arranged in an array, wherein these light-emitting elements produce illumination at one or more wavelengths. Proximate to the light-emitting elements is a diffuser, which collects the illumination produced by the discrete light-emitting elements and redirects this illumination in one or more predetermined directions, thereby blending together the one or more wavelengths of illumination and concentrating the illumination in the predetermined directions. The illumination system further comprises a power system, which provides energy to the light-emitting elements thereby resulting in their activation. Through the blending of the illumination produced by the discrete light-emitting elements together with the redirection of the illumination in a desired direction, both of which are enabled by the diffuser placed proximate to the discrete light-emitting elements, the creation of a blended pattern of illumination from these discrete light-emitting elements is provided, wherein this pattern of illumination can be one or more lines or planes of illumination.
Abstract:
Illuminators and systems are provided that permit the production of a plurality of beams of electromagnetic radiation having selected peak wavelength, bandwidth, intensity, pulse frequency and pulse duration and the beams being coordinately controlled. Multiple beam illuminators can use either filter elements arranged into filter arrays, or tunable lasers, monochromators, LEDs, LCDs, tunable filters and the like or any other source having characteristic wavelength properties. Multiple clocked sources can be adapted to regulate a variety of variables of output beams. Variables that can be coordinately controlled include mean wavelength, wavelength bandwidth, beam intensity, duration, and time of onset and termination of each beam. Multiple output beams permit the coordinated illumination of a target, and optional sensors provide feedback regarding the effects of therapy. Computer storage devices, programs, and controllers can provide easy selection of the characteristics of the output beams. Output beams can have a variety of different shapes and configurations, depending on the desired application. Use of multiple clocked illuminators can improve electromagnetic therapy for a variety of disorders involving abnormal function of excitable tissues, including nerves, muscles and blood vessels.
Abstract:
A light source for testing sites using a fluorescent dye is described. The light source can include a low voltage lamp or a low heat generating lamp.