Abstract:
The invention may be embodied as a glare detection system or as a method of detecting glare. In a system according to the invention, there may be a light receiving surface, a first input channel, a second input channel, a glare signaling circuit and a glare reducing circuit. The first input channel may provide an indication of the amount of light impinging on a first portion of the light receiving surface. The second input channel may provide an indication of the amount of light impinging on a second portion of the light receiving surface. The glare signaling circuit (“GSC”) may have a first input port in communication with the first input channel, a second input port in communication with the second input channel, a logic-or gate capable of producing an output signal when the logic-or gate detects that the first input channel or the second input channel indicates glare on the light receiving surface. The glare reducing circuit (“GRC”) may be in communication with the logic-or gate, and may be capable of reacting when the logic-or gate produces the output signal. For example, the GRC may react by determining where on the light receiving surface glare exists.
Abstract:
An infrared sensor has a groove formed at a peripheral portion of an optical filter in a region opposed to a circumferential region of an opening of a package so as to be continuously located in the peripheral portion of the optical filter. The optical filter has a resistance of about 1 MΩ/cm or less. The package is mainly composed of a metal material. A conductive adhesive is used as an adhesive for joining the optical filter to the package. In a case where the optical filter has a filter body and a thin film made of an insulating material and provided on a surface of the filter body, the groove is formed to have a depth extending from the surface provided with the thin film made of the insulating material to the filter body.
Abstract:
A light sensor for recording the position of a light source includes a photo detector and a light modulator. The light modulator is configured to modulate the quantity of light hitting the photo detector based on an incident angle (α) of the light from the light source on the sensor.
Abstract:
An infrared detector includes a circuit block carrying an infrared sensor element and electronic components. The circuit block is composed of a dielectric resin layer and a first substrate formed with a circuit pattern and mounting the electronic components. The dielectric resin layer is formed in its top with a recess which defines around its periphery with a shoulder for supporting opposite ends of the infrared sensor. The first substrate is integrated to the lower end of the dielectric resin layer with at least one of the electronic components being molded into the dielectric resin layer to make the circuit block of a unified mold structure. Thus, a part or all of the electronic components are molded into the dielectric layer to realize the circuit block of a simple and low profile structure, while retaining an advantage of keeping the infrared sensor element sufficiently away from the electronic components and an associated electronic circuit, thereby assuring to give the infrared detector which is simple in construction, economical in cost, and reliable in the infrared detection.
Abstract:
The invention relates to a light-receiving element for receiving light reflected at an optical recording medium capable of preventing qualitative deterioration of an electrical signal obtained by photoelectric conversion of the light received, an optical head using the element, and an optical recording/reproducing apparatus using the element. The light-receiving element includes a light-receiving portion formed on a silicon substrate, and a cover layer disposed so as to cover an upper side of the silicon substrate, the cover layer on the light-receiving portion having a thickness of 30 μm or less as viewed in the normal direction of the silicon substrate surface.
Abstract:
An ultraviolet sensor includes a substrate; a diamond layer, placed on the substrate, functioning as a detector; and at least one pair of surface electrodes arranged on the diamond layer. The diamond layer has a detecting region present at the surface thereof, the detecting region has at least one sub-region exposed from the surface electrodes, and the sub-region has a covering layer, made of oxide or fluoride, lying thereon. A method for manufacturing the ultraviolet sensor includes a step of forming a diamond layer, functioning as a detector, on a substrate; a step of forming at least one pair of surface electrodes on the diamond layer; and a step of forming a covering layer, made of oxide or fluoride, on at least one sub-region of a detecting region present at the surface of the diamond layer, the sub-region being exposed from the surface electrodes.
Abstract:
An auto darkening eye protection device comprising a shutter assembly and a control circuit. The shutter assembly is adjustable between a clear state and a dark state. The control circuit comprises a sensing circuit, a weld detect circuit, and a delivery circuit. The sensing circuit senses incident light and provides an output indicative of the incident light. The weld detect circuit receives the output of the sensing circuit, and enables a dark state drive signal to be delivered to the shutter assembly. The delivery circuit outputs the dark state drive signal to the shutter assembly to switch the shutter assembly from the clear state to the dark state upon enablement by the weld detect circuit. The dark state drive signal includes a high voltage pulse followed by a stable AC waveform. The high voltage pulse is formed by a positive voltage signal and a negative voltage signal.
Abstract:
An auto darkening eye protection device comprising a shutter assembly and a control circuit. The shutter assembly is adjustable between a light state and a dark state. The control circuit comprises a sensing circuit, a weld detect circuit, a positive voltage generator, and a negative voltage generator. The sensing circuit senses incident light and provides an output indicative of the incident light. The weld detect circuit receives the output of the sensing circuit, and enables a dark state drive signal to be delivered to the shutter assembly. The positive and negative voltage generators output the dark state drive signal to the shutter assembly to switch the shutter assembly from the light state to the dark state upon enablement by the weld detect circuit. The dark state drive signal includes a high voltage pulse followed by a stable AC waveform. The high voltage pulse is formed by a positive voltage signal and a negative voltage signal.
Abstract:
An auto darkening eye protection device including a shutter assembly, a light sensing circuit, a control circuit and a power source. The shutter assembly is adjustable to a plurality of shade levels. The phototransistor of the light sensing circuit senses light from a welding arc and provides an output of the light sensing circuit indicative of the shade level at which the shutter assembly should be operated. The phototransistor is configured for surface mount and has an external base connection connected to the base of the phototransistor. The control circuit is configured to receive the output from the light sensing circuit and provide a drive signal to the shutter assembly responsive to said output, drives the shutter assembly to one of said plurality of shade levels. The present invention provides reduced power consumption, improved attenuation of low intensity light signals, a sharp rise time from the phototransistor in response to high intensity light, and allows implementation into a smaller sleeker eye protection device.
Abstract:
An optical heterodyne detection system includes an attenuator for attenuating an input signal before the input signal is combined with a local oscillator signal. An optimal attenuation level for the input signal, which improves the signal to noise ratio of the heterodyne beat signal, is determined by obtaining a base measurement of an output signal in response to the local oscillator signal and in the absence of the input signal, obtaining sample measurements of the output signal in response to the input signal as a function of different attenuation levels, and determining the optimal attenuation level as a function of the base measurement and the sample measurements. A minimum attenuation level for the input signal, which protects receiver photodetectors from being saturated or damaged, is determined by setting an initial attenuation level and gradually reducing the attenuation level until the voltage limit of the photodetectors is reached.