Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A system (200) and method (800) for determining whether a sample object (203) has a color that is within a predetermined range is provided. The system (200) includes a light source (201) capable of projecting lights having different light wavelength spectrum upon the sample object (203). A controller (222) causes the light source (201) to project a first light wavelength spectrum upon the sample object (203), then another, then another, and so forth. While each light is projecting upon the object, a monochromatic image capture device (202) captures an image having luminous intensity information. The luminous intensity information, or a subset thereof selected by an image selection tool (232) is then compared to the statistical range, which is derived from a plurality of images taken of a reference object (403).
Abstract:
To provide a functional spectral filter through which, it is possible for an observer wearing the functional spectral filter to change his or her color sensitivity (ease of color distinction), and which is for designing a color scheme easy to be distinguished for a color deficient observer by using the filter. A functional spectral filter including a multilayer is formed in accordance with a thin film design (an optimization method) determined by use of a color vision theory so as to make color sensitivity into a desired pattern. With respect to combinations that two colors among a plurality of specified colors are combined, color differences in the respective combinations are made close to a color difference given in advance. Alternatively, with respect to specified combinations, the color differences are made small or the color differences are made large.
Abstract:
Detection arrangement and method for detecting presence of a residue in a sample include determining color values of the sample, associated with the L*a*b color model. A value of a composite parameter Z is calculated as follows: A=wL+waa+wbb where wL, wa and wb are weighting factors having a value depending on the residue and the sample. A determination is made whether or not the sample comprises more or less than a predetermined amount of the residue in dependence on the value of the composition parameter Z. In a preferred embodiment, the arrangement is used to detect antibiotic residues, e.g. penicillin-G, in food products, elg. Milk, or body fluids, e.g. blood, urine.
Abstract:
Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Abstract:
A spectral characteristic calculation device stores a plurality of conversion matrices used to calculate the spectral characteristic values based on brightness values of a digital color image, and a plurality of pieces of brightness value information respectively corresponding to a plurality of sample groups. The plurality of conversion matrices are generated based on the sample color image information contained in the plurality of sample groups, respectively. An evaluating unit is configured to evaluate similarity of brightness value information of the target data with respect to each of the plurality of pieces of brightness value information of the plurality of sample groups. A conversion matrix corresponding to the sample group that is evaluated to have the highest similarity is selected as the conversion matrix. Then, a calculating unit calculates the spectral characteristic values of the target data using the conversion matrix selected by the selecting unit.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A device for identifying the optical characteristics of a tooth, which comprises a light source for sequentially emitting a plurality of radiations of different wavelengths; an optical conductor for conducting the radiations onto the tooth; a sensor for collecting radiations reflected by the tooth; a comparator for determining whether the intensities of the collected radiations fall within a predefined range; and an indicator for signaling the resulting determination.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.