Abstract:
An arrangement for building a compact Fourier transform interferometer for optical radiation according to the Michelson principle or a principle derived therefrom. According to the invention, this arrangement is characterized in that the optical modulation of the radiation in at least one of the interferometer arms is produced by the translational displacement of micromechanical translation mirrors that are optically accessible on one side or on both sides, with an effective oscillation amplitude of at least 50 μm and a usable mirror surface area of at least 1 mm2. In doing so, the micromechanical mirror components according to the invention assume the function of known movable mirrors so that by using an almost massless microcomponent in comparison to conventional systems, a much smaller size and a mirror modulation frequency that is several orders of magnitude higher can be achieved. The arrangement according to the invention is used especially for optical spectroscopy.
Abstract:
A sensor having an input to an interferometer. The input may receive emissions from a detected fluid. The output of the interferometer may be focused on an array of light detectors. Electrical signals from the detectors may go to a processor. The output of the processor may include a spectrum of the detected fluid. Also, the identity of the fluid may be determined.
Abstract:
The invention aims to integrate a two-wave stationary interferometer on a photodetector during fabrication in order to constitute a miniature stationary Fourier transform spectrometer. The interferometer essentially comprises a plate having a first plane face coinciding with an image plane on semiconductor photosensitive elements and a second face that is not parallel to the first face. The second face reflects a wave that has a phase difference relative to the incident wave interfering with it that is a function of the local thickness of the plate.
Abstract:
A spectrometer for determining a spectrum of a light by using a mirror to reflect the light so that the light forms an intensity standing wave pattern through superposition of an incident portion of the light and a reflected portion of the light. The spectrometer is equipped with an intensity detector whose thickness is less than a shortest wavelength of the light being examined and which is semitransparent over the spectrum. The spectrometer has a mechanism to provide relative movement between the mirror and the intensity detector such that the intensity detector registers a variation of the intensity standing wave pattern. An analyzer, such as a Fourier transform analyzer, is employed to determine the spectrum of the light from that variation of the intensity standing wave pattern.
Abstract:
A scanning interferometer includes an optical arrangement. The optical arrangement therein includes two mirrors diverting the travel direction of light, arranged back-to-back such that they reflect to opposite directions and that their optical axes join. The mirrors are arranged in a mounting, which is arranged to move back and forth by a moving mechanism. The mounting includes a base element supported by the body of the interferometer, at least two support arms connected with the base element at their first ends via first bending points and a mounting element connected with the second ends of the support arms via second bending points, the mirrors being fastened to the mounting element. The mechanism moving the mounting includes a assembly generating a linear back-and-forth movement and a transmission mechanism for converting the back-and-forth movement to a back-and-forth movement of the mounting element.
Abstract:
A twin-arm interferometer spectrometer having a tiltable reflector assembly, which includes a pair of mutually facing parallel reflective elements, varies the path length of both interferometer arms simultaneously to achieve high resolution in a small, low maintenance design. Collimated electromagnetic radiation is split by a beamsplitter into first and second arm beams. Both arm beams impinge on the tiltable reflector assembly, to retroreflectors, and back to the beamsplitter wherein they recombine to form an exit beam. The exit beam is directed to a sample and then to a suitable detector. Modulation of the exit beam is produced by tilting the reflector assembly about an axis parallel to the reflective elements in the reflector assembly. This tilting causes a simultaneous variation in the path length of both interferometer arms, and thereby yields a large total path difference with a relatively small movement. Symmetry between the paths of the reference beam and test beam results in greater stability and greater immunity to thermal expansion.
Abstract:
A two-beam interferometer for Fourier spectroscopy includes a rigid pendulum structure mounting at least one of the movable retroreflectors in a fully compensated optical system immune to tilt and lateral movement distortions. The swing of the rotatably journaled pendulum accurately confines the retroreflector(s) to movement in a single plane during scanning and, due to the low heat generated in the pendulum bearings, the simple and compact structure is well adapted to be housed in a cryostat aboard a spacecraft.
Abstract:
This document describes techniques and devices for Fourier-transform infrared (FT-IR) spectroscopy using a mobile device. A mobile device (502) includes a light source (504) that emits light toward an interferometer (508) that uses mirrors to separate and recombine the light. The interferometer directs the recombined light toward a person. Light reflected from, or transmitted through, the person is received through a reception port (506) to a photodetector (510) that outputs photodetector data that corresponds to a measured light intensity of the reflected and transmitted light as a function of a path length of the light or a mirror position of the interferometer. Based on the photodetector data, an interferogram is generated. Applying a technique such as a Fourier transform to the interferogram, a spectrum data set of the reflected and transmitted light is generated. Based on the spectrum data set, a concentration of solutes in the person's blood is calculated.
Abstract:
A technique and device to determine the spectrum of electromagnetic radiation in a certain range of wavelengths comprising: splitting said radiation into more than one beam; let these beams counter-propagate in a Sagnac-type ring interferometer; and imprinting a wavelength-dependent angular tilt onto the wavefront of each beam by at least one dispersive element which preferably is a transmission grating or grism; and re-combining the multiple beams on a detector that exhibits spatial resolution and can therefore resolve the fringes formed by interference; and perform the mathematical operations to determine the spectrum of said radiation from the obtained interferogram, wherein the dispersive element is mounted on a stage providing linear and/or rotational movement.
Abstract:
A spectrometer for measuring a spectral signature of an object comprises fringe generating optics for use with a camera and a processor. The fringe generating optics are formed of front optics and birefringent optics. The front optics comprises a diffuser adapted to receive light from the object. The birefringent optics is adapted to receive light from the diffuser and to generate interference fringes. The camera is adapted to receive the interference fringes and the processor generates the spectral signature of the object. This spectrometer is an improved Fourier transform spectrometer suitable for use with digital cameras, such as cameras found in mobile devices.