Abstract:
An electromagnet and related ion implanter system including active field containment are disclosed. The electromagnet provides a dipole magnetic field within a tall, large gap with minimum distortion and degradation of strength. In one embodiment, an electromagnet for modifying an ion beam includes: a ferromagnetic box structure including six sides; an opening in each of a first side and a second opposing side of the ferromagnetic box structure for passage of the ion beam therethrough; and a plurality of current-carrying wires having a path along an inner surface of the ferromagnetic box structure, the inner surface including the first side and the second opposing side and a third side and a fourth opposing side, wherein the plurality of current-carrying wires are positioned to pass around each of the openings of the first and second opposing sides.
Abstract:
The cross section of a beam is flattened by causing a plasma beam (25) extracted by a convergence coil from a plasma gun to pass through the magnetic field that extends to the direction orthogonal to the direction in which the plasma beam travels and is formed by magnets (27) made of permanent magnets which are oppositely arranged in pairs in parallel with each other. A plasma apparatus is provided using a plasma beam with 0.7≦Wi/Wt with a half-value of beam intensity with respect to a width Wt of a flattened beam 28 as Wi. At least one magnet is included which is stronger in intensity of a repulsive magnetic field at the center of the beam.
Abstract translation:通过使来自等离子体枪的会聚线圈提取的等离子体束(25)通过延伸到与等离子体束行进的方向正交的方向的磁场而使束的横截面平坦化,并且由 由永久磁铁制成的磁体(27)彼此成对平行配置。 使用具有0.7 <= Wi / Wt的等离子体束提供等离子体装置,其中光束强度的一半值相对于扁平光束28的宽度Wt为Wi。 包括至少一个磁体,其在梁的中心处的排斥磁场的强度更强。
Abstract:
A parallelizing component of an ion implantation system comprises two angled dipole magnets that mirror one another and serve to bend an ion beam traversing therethrough to have a substantially “s” shape. This s bend serves to filter out contaminants of the beam, while the dipoles also parallelize the beam to facilitate uniform implant properties across the wafer, such as implant angle, for example. Additionally, a deceleration stage is included toward the end of the implantation system so that the energy of the beam can be kept relatively high throughout the beamline to mitigate beam blowup.
Abstract:
In an analyzing electromagnet 40, each of magnetic poles 80 in which the plan-view shape is curved is divided along the traveling direction of an ion beam 2 into three partial magnetic poles 81 to 83. The gaps of the first and third partial magnetic pole pairs 81, 83 as counted from the inlet for the ion beam 2 are widened toward the outside of the curvature, and the gap of the second partial magnetic pole pair 82 is widened toward the inside of the curvature.
Abstract:
A technique for improving uniformity of a ribbon beam is disclosed. In one particular exemplary embodiment, an apparatus may comprise a first corrector-bar assembly and a second corrector-bar assembly, wherein the second corrector-bar assembly is located at a predetermined distance from the first corrector-bar assembly. Each of a first plurality of coils in the first corrector-bar assembly may be individually excited to deflect at least one beamlet in the ribbon beam, thereby causing the beamlets to arrive at the second corrector-bar assembly in a desired spatial spread. Each of a second plurality of coils in the second corrector-bar assembly may be individually excited to further deflect one or more beamlets in the ribbon beam, thereby causing the beamlets to exit the second corrector-bar assembly at desired angles.
Abstract:
In system for implanting workpieces with an accurately parallel scanned ion beam, a fine-control collimator construct is used to reduce the deviation of the scanned ion beam from a specified axis of parallelism and thereby improve its collimation. The shape of the fine-control collimator matches the ribbon shape of the beam and correction of parallelism in two orthogonal directions is possible. Measurement of the non-parallelism is accomplished by sampling the scanned beam in two planes and comparing timing information; and such measurement is calibrated to the orientation of the workpiece in the plane where ion implantation occurs. Measurement of non-uniformity in the doping profile is accomplished using the same means; and the scan waveform is adjusted to substantially remove any non-uniformity in the doping profile.
Abstract:
An ion beam implanter includes an ion beam source for generating an ion beam moving along a beam line and a vacuum or implantation chamber wherein a workpiece, such as a silicon wafer is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. A scanning magnet is most preferably used to control a side to side scanning of the ion beam so that an entire implantation surface of the workpiece can be processed.
Abstract:
An electron beam exposure system for exposing a pattern on a wafer using a plurality of electron beams, comprising a section for generating a plurality of electron beams, an electron lens section having a plurality of apertures for passing a plurality of electron beams and focusing the plurality of electron beams independently, and a magnetic field formation section provided at least one of the plurality of apertures and forming a magnetic field in a direction substantially perpendicular to the irradiating direction of an electron beam passing through the aperture.
Abstract:
A beam delivery system uses a set of electronically controlled magnets with a common magnetic yoke to steer the beam directly onto the products being irradiated with a very short distance between the magnets and the products.
Abstract:
The present invention relates to a method and apparatus of fabricating electromagnetic coil vanes. The method involves photolithographically exposing high resolution, dense wire patterns in a flash coat of copper, on both sides of a ceramic vane substrate. The substrate can be pre-drilled with a through hole to connect the two copper coil patterns. Additional copper is then deposited on both high resolution patterns and in the through hole by plating until the desired thickness is obtained. A firing operation is then performed that eutectically bonds the copper to the ceramic.