Abstract:
An electrical connector comprised of a plurality of electrical contacts arranged in a stair-step configuration designed to mate with electrical components having electrical contacts arranged in a stair-step configuration. A direct connect signaling system comprised of stair-step electrical connectors mated to stair-step printed circuit boards, other stair-step electrical components, or combinations thereof.
Abstract:
Flexible circuitry is populated with integrated circuitry (ICs) disposed along one or both of its major sides. The populated flexible circuitry is disposed proximal to a rigid substrate to place the integrated circuitry on one or both sides of the substrate with one or two layers of integrated circuitry on one or both sides of the substrate. The rigid substrate exhibits adhesion features that allow more advantageous use of thermoplastic adhesives with concomitant rework advantages and while providing flexibility in meeting dimensional specifications such as those promulgated by JEDEC, for example.
Abstract:
A stacked semiconductor module, a method of fabricating the same, and an electronic system using the module are provided. A first semiconductor module having a plurality of semiconductor devices mounted on a rigid printed circuit board (PCB) and a second semiconductor module having a plurality of other semiconductor devices mounted on a flexible PCB are provided. On the rigid PCB a number L of first tabs may be disposed on a first surface, and a number K of second tabs may be disposed on a second surface of the rigid PCB. The flexible PCB may have a number M of third tabs on a third surface, and a number N of fourth tabs on a fourth surface of the flexible PCB. The second tabs may be combined with the third tabs using a conductive adhesive. The third tabs may be electrically connected to corresponding ones of the second tabs.
Abstract:
Flexible circuitry is populated with integrated circuitry (ICs), and contacts are distributed along the flexible circuitry to provide connection to an application environment. The flexible circuitry is disposed about a rigid substrate, placing the ICs on one or both sides of the substrate with one or more layers of integrated circuitry on one or both sides of the substrate. The substrate is preferably devised from thermally-conductive materials and one or more thermal spreaders are in thermal contact with at least some of the ICs. Optionally, as an additional thermal management feature, the module may include a high thermal conductivity thermal sink or area that is disposed proximal to higher thermal energy IC devices. In preferred embodiments, extensions from the substrate body or substrate core encourage reduced thermal variations amongst the ICs of the module while providing an enlarged surface for shedding thermal energy from the module.
Abstract:
A semiconductor module includes a base plate, a circuit substrate coupled to a side face of the base plate, a first semiconductor package mounted on the circuit substrate and a radiation channel portion inside the base plate. The radiation channel portion includes at least one heat pipe containing a working fluid. The at least one heat pipe containing the working fluid is configured to transfer heat generated by the first semiconductor package. Thus, the radiation channel portion may provide an efficient and reliable semiconductor module having improved heat transfer and radiation performance.
Abstract:
A printed circuit board, a memory module having the same, and a fabrication method thereof. The printed circuit board includes an interconnection substrate on which electronic components are mounted and in which a plurality of signal lines are arranged. The signal lines are electrically coupled to the electronic components. A heat sink is disposed on one surface of the interconnection substrate to dissipate heat of the electronic components, and in which no signal lines are arranged. The printed circuit board includes a bending substrate coupling the interconnection substrate to the heat sink, and formed of a flexible material configured to be bent.
Abstract:
A high-density memory module is made up of two memory boards, each with memory elements affixed to each of two sides, the two memory boards disposed on either side of a central rigid substrate, each memory board having a flexible wiring array, electrically and mechanically affixed at one end to one of the memory board and at the other end to the other of the memory boards, the flexible wiring array wrapped at its midpoint around a bottom of the central rigid substrate, so that two linear arrays of comb tabs affixed to the flexible wiring array are disposed in proximity to the bottom of the central rigid substrate, so that the central rigid substrate may be inserted into a mating electrical connector, making an electrical connection with both memory boards.
Abstract:
A flex circuit is populated on one or both sides with plural integrated circuit die. In a preferred mode, the flex circuit is populated with flip-chip die. One side of the flex circuit has a connective facility implemented in a preferred mode with edge connector contacts. The flex circuit is disposed about a substrate to form a circuit module that may be inserted into an edge connector such as ones typically found on a computer board.
Abstract:
A thin multichip module comprises: a foldable frame comprising two rigid, substantially planar members capable of being folded together about a selected fold axis to form a substantially closed structure; a flex circuit having a plurality of integrated circuit chips disposed thereon, the flex circuit bonded to at least one of the planar members over at least a portion of each of their respective surfaces; and, electrodes on the module configured to be accessible to an external socket after the frame is closed. A method for making a thin multichip module comprises the steps of: a. attaching integrated circuit chips to a flex circuit; b. bonding the flex circuit to a foldable frame comprising two rigid, substantially planar members capable of being folded together about a selected fold axis to form a substantially closed structure; and, c. folding the frame approximately 180° about the fold axis.
Abstract:
A low insertion force multichip in-line module comprises: a substantially rigid frame; a flex circuit having a plurality of integrated circuit chips disposed thereon, the flex circuit having contacts at least partially exposed along one edge of the frame; and, a compliant layer disposed between the exposed flex circuit and the rigid frame, whereby controlled deformation of the compliant layer enhances electrical continuity between the contacts and corresponding external electrical pins. Alternatively, a low insertion force multichip in-line module comprises: a substantially rigid frame; a flex circuit having a plurality of integrated circuit chips disposed thereon, the flex circuit having contacts at least partially exposed along one edge of the frame; a socket configured to matably engage the module; and, a compliant layer disposed between the exposed flex circuit and the rigid frame, whereby controlled deformation of the compliant layer enhances electrical continuity between the contacts and corresponding external electrical pins.