Abstract:
Provided is a camera module using a PCB with a step portion. The camera module includes a PCB, a housing, and a lens barrel. The PCB includes a substrate main body, a plurality of pads, and a step portion. The substrate main body is formed of a stacked structure with the shape of a rectangular plate. The pads is formed on both sides of the top of the substrate main body and is electrically connected through wires to an image sensor mounted on a central portion of the top of the substrate main body. The step portion is formed at the peripheral edges of the pads. The housing has a bottom peripheral portion that is closely attached to the step portion of the PCB. The lens barrel is installed vertically in an upper region of the housing. Accordingly, it is possible to enhance the quality of image taken by the image sensor. In addition, the contact area between the housing and the PCB is increased to make it possible to enhance the assembly reliability of the camera module.
Abstract:
A method of forming a stencil for the manufacture of semiconductor devices includes defining a plurality of slightly spaced segmental annular openings in a stencil plate. The spacing between the segmental annular openings define spokes extending from a central portion of said stencil connected via those spokes to the rest of the stencil plate. The spokes extend past two adjacent annular segments.
Abstract:
In the method, a conductive pad of the board is etched to a depth that is greater than 50% and less than 100% of a thickness of the conductive pad. Subsequently, a solder ball may be formed on the etched conductive pad. For example, the conductive pad may be copper.
Abstract:
A LED (Light Emitting Diode) substrate and packaging for a single diode or a diode array is described. The substrate includes an integral reflector(s) for the diode(s) in the form of a shaped cavity (or cavities) to house the diode die(s). The reflector cavity walls can optionally be plated with a reflective material and may include a molding material to serve as lens and sealant. Also described is a method for building a substrate with direct metal connection of low thermal path between a die and a bottom surface of the substrate. Another embodiment is for two electrical traces crossing each other without the need for a two layer interconnect structure. The substrate and reflector structures are built of aluminum-aluminum oxide composition applying a technology known in the art as ALOX technology. The resulting substrate and packaging afford the required electrical interconnections and enhanced thermal performance while maintaining excellent mechanical properties. The same substrate and packaging concepts can be applied for other high power devices requiring high thermal conductivity substrate and package.
Abstract:
A method for fabricating a bonding pad 45 includes disposing a droplet L including a liquid containing a conductive material on a substrate P by a droplet ejection method and solidifying the disposed droplet L to forms the pad. The bonding pad 45 formed has a cylindrical shape and includes a concave part 47.
Abstract:
A method of reducing a likelihood that a die pad will be delaminated from a die in an integrated circuit die package for a structure design during an attachment of a heat sink member to the die pad using solder, is provided. A sample structure of the structure design is evaluated to determine whether a volume of last solidification for the solder is centrally located with respect to the die pad and is located at or near an interface of the solder and the die pad. If the last solidification volume is centrally located and is located at or near the interface of the solder and the die pad, and if the die pad is delaminated from the die, the structure design is modified so that less metal of the heat sink member is centrally located than before the modifying.
Abstract:
An electronic apparatus has a wiring board and connector units which are mounted at a case unit. The connector unit has an external connection surface connected with the external and a terminal installation surface, which is substantially flat and positioned at an opposite side to the external connection surface. A terminal of the connector unit is electrically connected with a pad positioned at a first surface of the wiring board via a connection member. The wiring board and the connector unit which are integrated are mounted at the case unit, with the first surface and the terminal installation surface facing the case unit. The case unit has an installation surface at which a recess for accommodating therein the connection member is arranged.
Abstract:
A light source unit includes a substrate mounting a plurality of light emitting diodes (LED's) for irradiating beam to an object. The substrate is formed of a material having high heat conductivity and the unit includes a chip resistor mounted on the substrate and heat generation controller for heating the substrate with heat generated in the chip resistor upon supply of power to the chip resistor. The plural LED's are arranged in the form of an array on the substrate and a plurality of the chip resistors are arranged linearly along the array of LED's.
Abstract:
A system is provided for an integrated circuit package including a leadframe with a lead finger. A groove is in a lead finger for a conductive bonding agent and a passive device is in the groove to be held by the conductive bonding agent.
Abstract:
Methods of forming a conductive structure on a substrate prior to packaging, and a test probe structure generated according to the method, are disclosed. The conductive structure includes a high aspect ratio structure formed by injected molded solder. The invention can be applied to form passive elements and interconnects on a conventional semiconductor substrate after the typical BEOL, and prior to packaging. The method may provide better electromigration characteristics, lower resistivity, and higher Q factors for conductive structures. In addition, the method is backwardly compatible and customizable.