Abstract:
A circuit board and a manufacturing method thereof are provided. First, the circuit board has a coaxial signal trace that comprises a conductive line and conductive wall. The conductive wall surrounds part or all of the conductive line. Additionally, the circuit board has a plurality of circuit layers where the coaxial signal trace is located. Secondly, the method for manufacturing the circuit board has several steps including using a module to form a pattern that is made for the circuit layers where part of the conductive wall is encompassed. In the end, through the present invention, the problems from the high frequency signal transmission in electronic apparatus can be solved or reduced.
Abstract:
A through substrate which comprises a silicon substrate (10) having a through hole (19) penetrating a front surface (11) and a back surface (12), a oxidized silicon film (13) being provided along the inner wall surface of the through hole (19), layers (14, 15) comprising Zn and Cu, respectively, being formed on the inner wall surface of the oxidized silicon film (13), and a Cu plating layer (18) which has been grown from a Cu seed layer (17) along the inner wall surface of layers (14, 15) comprising Zn and Cu, respectively, via an insulating layer (16) between them. The above through substrate can provide a through electrode capable of avoiding the noise due to the cross talk.
Abstract:
A shielded through-via that reduces the effect of parasitic capacitance between the through-via and surrounding wafer while providing high isolation from neighboring signals. A shield electrode is formed in the insulating region and spaced apart from the through-via. A coupling element couples at least the time-varying portion of the signal carried on the through-via to the shield electrode. This reduces the effect of any parasitic capacitance between the through-via and the shield electrode, hence the surrounding wafer.
Abstract:
A signal transmission structure including a first signal pad, a first reference plane surrounding the first signal pad, a second signal pad, a second reference plane surrounding the second signal pad, an electric conductive element, and a conductive wall is provided. The second reference plane is parallel to the first reference plane, and the electrical conductive element is connected between the first signal pad and the second signal pad to transmit a signal. The conductive wall is connected between the first reference plane and the second reference plane and surrounding the electrical conductive element. Furthermore, a package structure applying to the signal transmission structure and a bonding method thereof are provided.
Abstract:
A signal transmission structure is provided. The signal transmission structure includes a circuit board, a coaxial cable connector, and a conductive layer; the aforementioned circuit board includes at least one alignment through hole, a signal pad, and a signal trace connected to the signal pad. Additionally, the signal pad and the signal trace are disposed on a surface of the circuit board. In addition, the alignment through hole passes through the circuit board. The coaxial cable connector is located on a surface of the circuit board. The coaxial cable connector has a signal pin and at least an alignment pin, and the alignment pin is inserted into the alignment through hole. The conductive layer is located between one end of the signal pin and the signal pad, and the signal pin is electrically connected to the signal pad via the conductive layer.
Abstract:
A circuit board having: a through hole to mount the circuit board to a casing or an electronic apparatus; and a coil-shaped conductive pattern provided on a plane perpendicular to the through hole so as to intersect a circumference around the through hole as a center.
Abstract:
A via transmission line for a multilayer printed circuit board (PCB) in which a wave guiding channel is formed by a signal via or a number of signal vias, an assembly of ground vias surrounding the signal via or corresponding number of coupled signal vias, a set of ground plates from conductor layers of the multilayer PCB, and a clearance hole. In this via transmission line, the signal via, or the number of signal vias forms an inner conductive boundary, ground vias and ground plates from conductor layers of the multilayer PCB form an outer conductive boundary, and the clearance hole provides both isolation of the inner conductive boundary from the outer conductive boundary and high-performance broadband operation of the via transmission line by means of the predetermined clearance hole cross-sectional shape and dimensions where the cross-sectional shape of the clearance hole is defined by the arrangement of ground vias in the outer conductive boundary and dimensions of the clearance hole are determined according to a method to minimize frequency-dependent return losses caused by specific corrugations of the outer conductive boundary formed by ground plates in the wave guiding channel of the via transmission line.
Abstract:
Electronic devices include a substrate with first and second pairs of conductive traces extending in or on the substrate. A first conductive interconnecting member extends through a hole in the substrate and communicates electrically with a first trace of each of the first and second pairs, while a second conductive interconnecting member extends through the hole and communicates electrically with the second trace of each of the first and second pairs. The first and second interconnecting members are separated from one another by a distance substantially equal to a distance separating the conductive traces in each pair. Electronic device assemblies include a transmitting device configured to transmit a differential signal through a conductive structure to a receiving device. The conductive structure includes first and second pair of conductive traces with first and second interconnecting members providing electrical communication therebetween.
Abstract:
A circuit board for transitioning a cable to a connector comprises a circuit board having an outer surface. A circuit trace provided on the outer surface has a cable pad and a contact pad provided at different ends of the outer surface. A ground plane is held by the circuit board. A ground link on the outer surface is connected to the ground plane. The circuit trace and the ground link are located immediately adjacent one another. A resistive coating is provided over the circuit trace and the outer surface of the circuit board. The resistive coating has a mask aperture there-through exposing an uncoated portion of the circuit trace and exposing the ground link to the ground plane. A conductive jumper material is provided on the uncoated portion of the circuit trace and the ground link to render the circuit trace electrically common with the ground plane.
Abstract:
Provided are coaxial waveguide microstructures. The microstructures include a substrate and a coaxial waveguide disposed above the substrate. The coaxial waveguide includes: a center conductor; an outer conductor including one or more walls, spaced apart from and disposed around the center conductor; one or more dielectric support members for supporting the center conductor in contact with the center conductor and enclosed within the outer conductor; and a core volume between the center conductor and the outer conductor, wherein the core volume is under vacuum or in a gas state. Also provided are methods of forming coaxial waveguide microstructures by a sequential build process and hermetic packages which include a coaxial waveguide microstructure.