Abstract:
Surge arrester for a an electric machine, comprising a dummy component (2) which is, compared to components on a circuit board (1) of the electric machine, mounted at the shortest distance from a discharge element (4) of the electric machine, the dummy component (2) being connected to earth potential in at least one terminal.
Abstract:
A semiconductor substrate includes: 1) a first dielectric structure having a first surface and a second surface opposite the first surface; 2) a second dielectric structure having a third surface and a fourth surface opposite the third surface, wherein the fourth surface faces the first surface, the second dielectric structure defining a through hole extending from the third surface to the fourth surface, wherein a cavity is defined by the through hole and the first dielectric structure; 3) a first patterned conductive layer, disposed on the first surface of the first dielectric structure; and 4) a second patterned conductive layer, disposed on the second surface of the first dielectric structure and including at least one conductive trace. The first dielectric structure defines at least one opening to expose a portion of the second patterned conductive layer.
Abstract:
A component-embedded substrate includes a multilayer body formed by stacking up a plurality of resin layers in a predetermined direction, a component embedded in the multilayer body, the component having a plurality of terminal electrodes, a plurality of joining conductors provided in the multilayer body and joined to the plurality of terminal electrodes, a plurality of wiring conductors provided in the multilayer body and electrically coupled to the plurality of joining conductors and at least one auxiliary member enclosed within an outer boundary of the component provided in the multilayer body. The auxiliary member may be electrically insulated from each of the plurality of wiring conductors and arranged to balance pressures acting on the plurality of terminal electrodes when pressure is applied on the multilayer body.
Abstract:
A touch-screen device is disclosed having a touch-sensitive area that includes a plurality of patterned driver electrodes, each having a plurality of patterned conductive electrically connected driver micro-wires. An unpatterned conductive layer that is unpatterned in the touch-sensitive area is in electrical contact with the driver micro-wires of the driver electrodes. A plurality of patterned sensor electrodes each includes a plurality of patterned conductive electrically connected sensor micro-wires. A dielectric layer is located between the driver electrodes and the sensor electrodes.
Abstract:
Disclosed is a light emitting diode (LED) package, which can be used for, for example, a light source module, a backlight unit and a display device, that may, for example, include an LED chip in a body portion of the LED package; first and second lead frames separated from each other in the body portion, each of the first and second lead frames including first and second leads that are electrically connected to the LED chip and are used as one of anode and cathode leads; and first and second dummy lead frames separated from each other in the body portion and electrically insulated from the first and second lead frames.
Abstract:
A method including a) forming a through-hole in a dummy substrate including a surface by radiating a laser to the surface of the dummy substrate in a state where the dummy substrate is moved relative to the laser along a direction parallel to the surface of the dummy substrate, b) determining an angle α (−90°
Abstract:
An electronic module with an integrated electromagnetic shield using surface mount shield wall components has been disclosed. Each surface mount shield wall component provides side shielding of the circuitry within the overmolded electronic module and provides an exposed conductive shield wall section to which a top conductive shield can be applied. By including the shield structure as part of the overmolded electronic module, the need for a separate shield and separate process steps for installing the separate shield can be eliminated. Each surface mount shield wall component comprises a non-conductive portion that provides stability during a reflow soldering process, but at least a sacrificial portion of the non-conductive portion can be removed to reduce the amount of area occupied by the overmoldable shield structure.
Abstract:
A reliable and durable method of testing of printed circuit boards is presented. Test access components are placed in contact regions for providing electrical connectivity between test probes and the printed circuit board. In some cases, a test access component may be a surface mount resistor. The test access component may provide two points of contact for test probes to make electrical and mechanical contact with the printed circuit board. Test access components may also provide for increased durability of testing, allowing for a greater number of test contacts to be made between test probes and printed circuit boards than were previously possible.
Abstract:
Provided is a method of roll-to-roll processing of semiconductor parts, the method including: supplying to a processing unit a first material uncoiled from a first roll for processing at the processing unit; connecting a leading board to a leading portion of the first material before the processing so that the first material led by the leading board is processed during transfer in the processing unit along a path; cutting the leading board from the leading portion of the first material after the processing; and if a terminal edge of the first material begins to be processed at the processing unit, connecting another leading board to a leading portion of a second material uncoiled from a second roll and supplying the second material to the processing unit for processing.
Abstract:
An electronic device, and associated method, provided with a circuit board (10), with a set of input contacts (IN/COM), a set of output contacts (OUT/COM) and an electrical circuit (18) connected between the input contacts (IN/COM) and the output contacts (OUT/COM) and a controller. The controller carries out a real-time test of the circuit board using a test signal introduced into the electrical circuit, the electrical circuit (18) being designed as a passive network having a characteristic transfer function and provided with at least two separate partial circuits (18′, 18″) wherein the separate partial circuits are electrically connected in the assembled state by cooperation with at least one of: at least one device components and/or assembly components (181).