Abstract:
Systems, methods, and other embodiments associated with a DC notch gear filter are described. According to one embodiment, an apparatus includes a digital high pass filter having a cutoff frequency and a gear mechanism configured to successively change the cutoff frequency of the high pass filter based on a sequence of cutoff frequencies. The apparatus also includes a direct current (DC) estimator configured to estimate a DC offset of a digital input signal to the high pass filter based, at least in part, on an output signal of the high pass filter as a cutoff frequency is successively changed. A direct current (DC) compensator is configured to subtract the estimated DC offset from the input signal to the high pass filter.
Abstract:
Embodiments of a lamp having an internal fuse system are provided herein. In some embodiments, a lamp may include a transparent housing; a filament disposed in the housing, the filament having a main body disposed between a first end and a second end of the filament; a first conductor coupled to the filament at the first end of the filament; a first interceptor bar disposed in the housing and beneath the main body of the filament, wherein the first interceptor bar is coupled to the second end of the filament; a second conductor disposed proximate the first end of the filament and conductively coupled to the second end of the filament via the first interceptor bar, wherein the first interceptor bar is positioned such that an electrical short forms between the first and second conductors when the main body of the filament contacts the first interceptor bar.
Abstract:
Methods and systems for determining a radial differential metrology profile of a substrate heated in a process chamber is provided. Methods and systems for determining an angular or azimuthal differential metrology profile of a rotating substrate in a processing chamber are also provided. The radial and azimuthal differential metrology profiles are applied to adjust a reference metrology profile to provide a Virtual metrology of the process chamber. The virtual metrology is applied to control the performance of the process chamber.
Abstract:
Methods and systems for determining a radial differential metrology profile of a substrate heated in a process chamber is provided. Methods and systems for determining an angular or azimuthal differential metrology profile of a rotating substrate in a processing chamber are also provided. The radial and azimuthal differential metrology profiles are applied to adjust a reference metrology profile to provide a Virtual metrology of the process chamber. The virtual metrology is applied to control the performance of the process chamber.
Abstract:
Methods and apparatus for determining an endpoint of a process chamber cleaning process are provided. In some embodiments, a processing system having an endpoint detection system may include a process chamber having internal surfaces requiring periodic cleaning due to processes performed in the process chamber; and an endpoint detection system that includes a light detector positioned to detect light reflected off of a first internal surface of the process chamber; and a controller coupled to the light detector and configured to determine an endpoint of a cleaning process based upon the detected reflected light.
Abstract:
A method of cleaning a chamber used for annealing doped wafer substrates. In one embodiment the method provides removing dopants deposited in an annealing chamber after an annealing process of a doped substrate by flowing one or more volatilizing gases into the annealing chamber, applying heat to volatilize the deposited dopants in the annealing chamber, and exhausting the chamber to remove volatilized dopants from the annealing chamber.
Abstract:
A method for selective oxidation of silicon containing materials in a semiconductor device is disclosed and claimed. In one aspect, a rapid thermal processing apparatus is used to selectively oxidize a substrate by in-situ steam generation at high pressure in a hydrogen rich atmosphere. Other materials, such as metals and barrier layers, in the substrate are not oxidized.
Abstract:
Patterning effects on a substrate are reduced during radiation-based heating by filtering the radiation source or configuring the radiation source to produce radiation having different spectral characteristics. For the filtering, an optical filter may be used to truncate specific wavelengths of the radiation. The different configurations of the radiation source include a combination of one or more continuum radiation sources with one or more discrete spectrum sources, a combination of multiple discrete spectrum sources, or a combination of multiple continuum radiation sources. Furthermore, one or more of the radiation sources may be configured to have a substantially non-normal angle of incidence or polarized to reduce patterning effects on a substrate during radiation-based heating.
Abstract:
A method of cleaning a chamber used for annealing doped wafer substrates. In one embodiment the method provides removing dopants deposited in an annealing chamber after an annealing process of a doped substrate by flowing one or more volatilizing gases into the annealing chamber, applying heat to volatilize the deposited dopants in the annealing chamber, and exhausting the chamber to remove volatilized dopants from the annealing chamber.