Abstract:
A circuit board including a conductive device and method for Interconnecting the first and second sides of a printed circuit board. The device includes first and second interconnection portions and an elongated member. The first Interconnection portion contacts a surface of the first side of the printed circuit board and the second Interconnection portion contacts the second side of the printed circuit board. The elongated member has first and second ends. The first end of the elongated member is connected to the first Interconnection portion and the second end of elongated member is connected to the second interconnection portion.
Abstract:
The instrument panel gauge assembly includes an applique having gauge graphics printed thereon and a needle pointer for a gauge assembly positioned adjacent thereto. A transparent chaplet is formed within the applique to allow light to pass through. The needle passes over the chaplet as the needle moves. When the needle is positioned directly in front of the chaplet, light is blocked from passing through the chaplet. A light sensing element is positioned behind the applique to detect the presence of light passing through the chaplet. A light baffle guides light passing through the chaplet to the light sensing element. A controller receives a signal from the light sensing element indicating when the needle pointer is directly in front of the chaplet. The controller then compares the actual input to the gauge with the position of the needle pointer, calculates a correction factor, and calibrates the gauge accordingly.
Abstract:
The instrument panel gauge assembly includes an applique having gauge graphics printed thereon and a needle pointer for a gauge assembly positioned adjacent thereto. A transparent chaplet is formed within the applique to allow light to pass through. The needle passes over the chaplet as the needle moves. When the needle is positioned directly in front of the chaplet, light is blocked from passing through the chaplet. A light sensing element is positioned behind the applique to detect the presence of light passing through the chaplet. A light baffle guides light passing through the chaplet to the light sensing element. A controller receives a signal from the light sensing element indicating when the needle pointer is directly in front of the chaplet. The controller then compares the actual input to the gauge with the position of the needle pointer, calculates a correction factor, and calibrates the gauge accordingly.
Abstract:
A circuit board assembly and method of fabricating an assembly are provided. The assembly preferably comprises a first circuit board defining an aperture and a second circuit board having an edge. The first circuit board has at least one conductive feature proximate the aperture, and the second circuit board has at least one conductive feature proximate the edge. Each board has at least one circuit trace in electrical communication with its respective conductive feature. The conductive features of the boards are placed in electrical communication with each other by way of the edge of the second board being disposed in the aperture of the first board. A solder joint can be disposed on the assembly so as to connect the first and second boards.