Abstract:
In a process for the fabrication of a radiation-absorbing optical element that contains a substrate (1) of plastic, a layer with a graduated refractive index (4) is fabricated on at least one surface (2) of the substrate (1) using a plasma etching process, after which a metal layer (7) is applied on top of the layer with a graduated refractive index (4).
Abstract:
In a process for the fabrication of a radiation-absorbing optical element that contains a substrate (1) of plastic, a layer with a graduated refractive index (4) is fabricated on at least one surface (2) of the substrate (1) using a plasma etching process, after which a metal layer (7) is applied on top of the layer with a graduated refractive index (4).
Abstract:
The invention relates to a rear surface mirror having a substrate which is transparent for the light to be reflected and having a silver layer which is applied on its rear side, a first intermediate layer being introduced as underlayer between the substrate and the silver layer at least in regions, said underlayer comprising a high-melting oxide or containing the latter and having a higher melting point than silver, and a further cover layer being applied on the side of the silver layer, which is orientated away from the substrate, at least in regions, said cover layer comprising one of the high-melting metals ruthenium, iridium, osmium, palladium, platinum, rhenium and/or rhodium or containing these.
Abstract:
A nanostructure is produced at a surface of a substrate composed of a plastic by means of a plasma etching process. A thin layer is applied to the plastic substrate and the plasma etching process is subsequently carried out.
Abstract:
The present invention relates to a process for reducing the surface reflectance of polymer substrates by means of ion bombardment, in which at least one substrate surface is modified by means of an argon/oxygen plasma with formation of a refractive index gradient layer.