Abstract:
The present invention provides an implantable electrode with increased stability wherein the surface is of the electrode comprises mesh grids which are filled with sticks which are filed with a conducting or insulating material. The present invention further provides a method of manufacturing an electrode with increased stability, comprising: depositing a metal layer on an base layer; applying photoresist layer on the metal layer; patterning the photoresist layer providing openings; electroplating the openings with metal; removing the photoresist layer leaving spaces; and filling the spaces with polymer.
Abstract:
The invention relates to a method of embedding a metal trace in a silicone containing polymer layer, by the steps of applying an agent that does not adhere to a substrate; applying a polymer layer on the non adhering agent; irradiating a surface of the polymer with a light beam emitted by an excimer laser creating cuts, grooves, blind holes or vias; immersing the irradiated polymer in an autocatalytic bath containing metal ions and metallizing the polymer; thermally treating the metallized polymer layer to induce diffusion of the metalized metal into the first polymer layer; applying a polymer layer on the thermally treated metallized polymer; and thermally treating the metallized polymer.
Abstract:
A flexible circuit electrode array, which comprises: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a partial or entire coating of the base and top layer by a soft polymer.
Abstract:
The present invention is an improved hermetic package for implantation in the human body. The implantable device includes an electrically non-conductive substrate with electrically conductive vias. A flip-chip circuit is attached to the substrate using conductive bumps and electrically connected to a first subset of the vias. The flip-chip circuit can contain one or more stacks or a folded stack. A wire-bonded circuit is also attached to the substrate and electrically connected to a second subset of the vias. A cover is bonded to the substrate. The cover, substrate, and vias form an improved hermetic package for implantation.
Abstract:
The present invention is a non-destructive method of inspecting a bond, particularly a braze bond, in a hermetic package. The invention involves a unique hermetic package design adapted for ultrasonic inspection and a method of inspecting the package. This package and non-destructive inspection process are particularly useful in implantable neural stimulators such as visual prostheses.
Abstract:
The present invention is an improved hermetic package for implantation in the human body. The implantable device comprises an electrically non-conductive substrate; a plurality of electrically conductive vias through said electrically non-conductive substrate; a flip-chip circuit attached to said electrically non-conductive substrate using conductive bumps and electrically connected to a first subset of said plurality of electrically conductive vias, wherein said flip-chip circuit contains one or more stacks or a folded stack; a wire bonded circuit attached to said electrically non-conductive substrate and electrically connected to a second subset of said electrically conductive vias; and a cover bonded to said electrically non-conductive substrate, said cover, said electrically non-conductive substrate and said electrically conductive vias forming a hermetic package.
Abstract:
Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, and cortical stimulation, and many related purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. By applying the right amount of heat to a completed array, a curve can be induced. With a thermoplastic polymer it may be further advantageous to repeatedly heat the flexible circuit in multiple molds, each with a decreasing radius. Further, it is advantageous to add material along the edges. It is further advantageous to provide a fold or twist in the flexible circuit array. Additional material may be added inside and outside the fold to promote a good seal with tissue.
Abstract:
The invention is a device and method for connecting a hermetic package to a flexible circuit such as for an electrode array in an implantable device. Attaching metal pads on a flexible circuit to metal pads on a hermetic device by conductive adhesive is known. A smooth metal, such as platinum, does not bond well to conductive epoxy. The invention provides a roughened surface, such as etching or applying high surface area platinum gray, to improve adhesion to platinum or other metal pads.
Abstract:
The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on the polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on the polymer base layer and the metal traces at least one tack opening. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on the polymer base layer; patterning the metal to form metal traces; depositing a polymer top layer on the polymer base layer and the metal traces; and preparing at least one tack opening.
Abstract:
Polymer materials form electrode array bodies for neural stimulation, especially for retinal stimulation to create vision. The method lays down a polymer layer. Apply a metal layer to the polymer and pattern to create electrodes and leads. Apply a second polymer layer over the metal layer and pattern to leave openings for electrodes. The array and its supply cable are a single body. A method for manufacturing a flexible circuit electrode array, is: deposit a metal trace layer on an insulator polymer base layer; apply a layer of photoresist on the metal trace layer and pattern the metal trace layer and form metal traces on the insulator polymer base layer; activate the insulator polymer base layer and deposit a top insulator polymer layer and form a single insulating polymer layer with the base insulator polymer layer; wherein the insulator polymer layers are heated at 80-150° C. and then at 230-350° C.