Abstract:
The disclosed embodiments provide a system that facilitates the maintenance and execution of a software offering. During operation, the system obtains a policy change associated with a service definition of the software offering. Next, the system updates one or more requirements associated with the software offering based on the policy change. Finally, the system uses the updated requirements to dynamically reprovision one or more resources for use by the software offering during execution of the software offering.
Abstract:
A modular bus permitting single or double termination is described. The bus includes a terminated motherboard data net for communicating data signals between a master and one or more motherboard devices. A socket is used for coupling the data signals between the motherboard data net and a terminated module data net of a removable module. The module data net communicates the data signals between the master and one or more module devices. The data signal swing and level of reflection of the data signals are substantially independent of the presence of the module.
Abstract:
The present invention provides a method and apparatus for synchronizing signal transfers between two clock domains, where the clock domains have a gear ratio relationship. A gear ratio means that the clocks are related by a ratio, such that each clock has a different integer number of clock cycles in a common period. Also, in addition to a gear ratio relationship, the clocks may have a synchronized edge at the end of the common period. For each clock, the cycles in the common period are “colored”, i.e., identified by a number (1st, 2nd, etc.). By using the coloring technique, the appropriate clock edge to perform a data or control signal transfer can be identified. The edges are preferably chosen to minimize the latency of the transfer.
Abstract:
The present invention provides a method and apparatus for synchronizing signal transfers between two clock domains, where the clock domains have a gear ratio relationship. A gear ratio means that the clocks are related by a ratio, such that each clock has a different integer number of clock cycles in a common period. Also, in addition to a gear ratio relationship, the clocks may have a synchronized edge at the end of the common period. For each clock, the cycles in the common period are “colored”, i.e., identified by a number (1st, 2nd, etc.). By using the coloring technique, the appropriate clock edge to perform a data or control signal transfer can be identified. The edges are preferably chosen to minimize the latency of the transfer.
Abstract:
A high frequency bus system which insures uniform arrival times of high-fidelity signals to the devices on the high frequency bus, despite the use of the bus on modules and connectors. A high frequency bus system includes a first bus segment having one or more devices connected between a first and a second end. The first bus segment has at least a pair of transmission lines for propagating high frequency signals and the devices are coupled to the pair of transmission lines. The high frequency bus system also includes a second bus segment which has no devices connected to it. The second bus segment also has at least a pair of transmission lines for propagating high frequency signals. The first end of the first segment and second end of the second segment are coupled in series to form a chain of segments and when two signals are introduced to the first end of the second bus segment at the substantially the same time, they arrive at each device connected to the first bus segment at substantially the same time. Also, when two signals originate at a device connected to the first bus segment at substantially the same time, they arrive at the first end of the second bus segment at substantially the same time. Uniform arrival times hold despite the use of connectors to couple the segments together, despite the segments being located on modules, without the need for stubs, despite the presence of routing turns in the segments and despite the type of information, such as address, data or control, carried by the signals.
Abstract:
A modular bus permitting single or double termination is described. The bus includes a terminated motherboard data net for communicating data signals between a master and one or more motherboard devices. A socket is used for coupling the data signals between the motherboard data net and a terminated module data net of a removable module. The module data net communicates the data signals between the master and one or more module devices. The data signal swing and level of reflection of the data signals are substantially independent of the presence of the module.
Abstract:
The disclosed embodiments provide a system that facilitates the deployment and execution of a software offering. During operation, the system obtains a set of requirements associated with a service definition of the software offering. Next, the system uses the requirements to automatically provision a set of infrastructure slices for use by the software offering without requiring manual configuration of the resources by a user, wherein each of the infrastructure slices includes a set of resources configured to support a workload associated with the software offering.
Abstract:
The present invention provides a method and apparatus for synchronizing signal transfers between two clock domains, where the clock domains have a gear ratio relationship. A gear ratio means that the clocks are related by a ratio, such that each clock has a different integer number of clock cycles in a common period. Also, in addition to a gear ratio relationship, the clocks may have a synchronized edge at the end of the common period. For each clock, the cycles in the common period are “colored”, i.e., identified by a number (1st, 2nd, etc.). By using the coloring technique, the appropriate clock edge to perform a data or control signal transfer can be identified. The edges are preferably chosen to minimize the latency of the transfer.
Abstract:
A system and method are disclosed that provide for processing certification data. The system and method include determining a rating definition associated with an engine configuration, and associating an arrangement number with the rating definition. In addition, the system and method include associating a certification type with the arrangement number, and associating a certification dataset, created by recording emissions test results of one or more emissions data parameters, with the rating definition to generate a certification family. The one or more emissions data parameters are included in at least one of an emissions law or an emissions regulation.
Abstract:
The present invention provides a method and apparatus for synchronizing signal transfers between two clock domains, where the clock domains have a gear ratio relationship. A gear ratio means that the clocks are related by a ratio, such that each clock has a different integer number of clock cycles in a common period. Also, in addition to a gear ratio relationship, the clocks may have a synchronized edge at the end of the common period. For each clock, the cycles in the common period are “colored”, i.e., identified by a number (1st, 2nd, etc.). By using the coloring technique, the appropriate clock edge to perform a data or control signal transfer can be identified. The edges are preferably chosen to minimize the latency of the transfer.