Abstract:
A wearable device is provided having multiple sensors configured to detect and measure different parameters of interest. The wearable device includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The wearable device couples a first parameter to be measured directly to the direct sensor. Conversely, the wearable device can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the wearable device by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device.
Abstract:
A transportation device is provided having multiple sensors configured to detect and measure different parameters of interest. The transportation device includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The transportation device couples a first parameter to be measured directly to the direct sensor. Conversely, the transportation device can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the transportation device by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device. This supports integrating multiple sensors such as a microphone, an accelerometer, and a temperature sensor to reduce cost, complexity, simplify assembly, while increasing performance.
Abstract:
A monolithically integrated multi-sensor (MIMS) is disclosed. A MIMs integrated circuit comprises a plurality of sensors. For example, the integrated circuit can comprise three or more sensors where each sensor measures a different parameter. The three or more sensors can share one or more layers to form each sensor structure. In one embodiment, the three or more sensors can comprise MEMs sensor structures. Examples of the sensors that can be formed on a MIMs integrated circuit are an inertial sensor, a pressure sensor, a tactile sensor, a humidity sensor, a temperature sensor, a microphone, a force sensor, a load sensor, a magnetic sensor, a flow sensor, a light sensor, an electric field sensor, an electrical impedance sensor, a galvanic skin response sensor, a chemical sensor, a gas sensor, a liquid sensor, a solids sensor, and a biological sensor.
Abstract:
A monolithically integrated multi-sensor (MIMS) is disclosed. A MIMs integrated circuit comprises a plurality of sensors. For example, the integrated circuit can comprise three or more sensors where each sensor measures a different parameter. The three or more sensors can share one or more layers to form each sensor structure. In one embodiment, the three or more sensors can comprise MEMs sensor structures. Examples of the sensors that can be formed on a MIMs integrated circuit are an inertial sensor, a pressure sensor, a tactile sensor, a humidity sensor, a temperature sensor, a microphone, a force sensor, a load sensor, a magnetic sensor, a flow sensor, a light sensor, an electric field sensor, an electrical impedance sensor, a galvanic skin response sensor, a chemical sensor, a gas sensor, a liquid sensor, a solids sensor, and a biological sensor.
Abstract:
A monolithically integrated multi-sensor (MIMS) is disclosed. A MIMs integrated circuit comprises a plurality of sensors. For example, the integrated circuit can comprise three or more sensors where each sensor measures a different parameter. The three or more sensors can share one or more layers to form each sensor structure. In one embodiment, the three or more sensors can comprise MEMs sensor structures. Examples of the sensors that can be formed on a MIMs integrated circuit are an inertial sensor, a pressure sensor, a tactile sensor, a humidity sensor, a temperature sensor, a microphone, a force sensor, a load sensor, a magnetic sensor, a flow sensor, a light sensor, an electric field sensor, an electrical impedance sensor, a galvanic skin response sensor, a chemical sensor, a gas sensor, a liquid sensor, a solids sensor,and a biological sensor.
Abstract:
A distributed sensor system is disclosed that provides spatial and temporal data in an operating environment. The distributed sensor nodes can be coupled together to form a distributed sensor system. For example, a distributed sensor system comprises a collection of Sensor Nodes (SN) that are physically coupled and are able to collect data about the environment in a distributed manner. For example, a first sensor node and a second sensor node is formed respectively in a first region and a second region of the semiconductor substrate. A flexible interconnect is formed overlying the semiconductor substrate and couples the first sensor node to the second sensor node. A portion of the semiconductor substrate is removed by etching beneath the flexible interconnect such that the distributed sensor system has multiple degrees of freedom that support following surface contours or sudden changes of direction.
Abstract:
A monolithically integrated multi-sensor (MIMS) is disclosed. A MIMs integrated circuit comprises a plurality of sensors. For example, the integrated circuit can comprise three or more sensors where each sensor measures a different parameter. The three or more sensors can share one or more layers to form each sensor structure. In one embodiment, the three or more sensors can comprise MEMs sensor structures. Examples of the sensors that can be formed on a MIMs integrated circuit are an inertial sensor, a pressure sensor, a tactile sensor, a humidity sensor, a temperature sensor, a microphone, a force sensor, a load sensor, a magnetic sensor, a flow sensor, a light sensor, an electric field sensor, an electrical impedance sensor, a galvanic skin response sensor, a chemical sensor, a gas sensor, a liquid sensor, a solids sensor, and a biological sensor.
Abstract:
A distributed sensor system is disclosed that provides spatial and temporal data in an operating environment. The distributed sensor nodes can be coupled together to form a distributed sensor system. For example, a distributed sensor system comprises a collection of Sensor Nodes (SN) that are physically coupled and are able to collect data about the environment in a distributed manner. For example, a first sensor node and a second sensor node is formed respectively in a first region and a second region of the semiconductor substrate. A flexible interconnect is formed overlying the semiconductor substrate and couples the first sensor node to the second sensor node. A portion of the semiconductor substrate is removed by etching beneath the flexible interconnect such that the distributed sensor system has multiple degrees of freedom that support following surface contours or sudden changes of direction.
Abstract:
A monolithically integrated multi-sensor (MIMS) is disclosed. A MIMs integrated circuit comprises a plurality of sensors. For example, the integrated circuit can comprise three or more sensors where each sensor measures a different parameter. The three or more sensors can share one or more layers to form each sensor structure. In one embodiment, the three or more sensors can comprise MEMs sensor structures. Examples of the sensors that can be formed on a MIMs integrated circuit are an inertial sensor, a pressure sensor, a tactile sensor, a humidity sensor, a temperature sensor, a microphone, a force sensor, a load sensor, a magnetic sensor, a flow sensor, a light sensor, an electric field sensor, an electrical impedance sensor, a galvanic skin response sensor, a chemical sensor, a gas sensor, a liquid sensor, a solids sensor, and a biological sensor.
Abstract:
A monolithically integrated multi-sensor (MIMS) is disclosed. A MIMs integrated circuit comprises a plurality of sensors. For example, the integrated circuit can comprise three or more sensors where each sensor measures a different parameter. The three or more sensors can share one or more layers to form each sensor structure. In one embodiment, the three or more sensors can comprise MEMs sensor structures. Examples of the sensors that can be formed on a MIMs integrated circuit are an inertial sensor, a pressure sensor, a tactile sensor, a humidity sensor, a temperature sensor, a microphone, a force sensor, a load sensor, a magnetic sensor, a flow sensor, a light sensor, an electric field sensor, an electrical impedance sensor, a galvanic skin response sensor, a chemical sensor, a gas sensor, a liquid sensor, a solids sensor, and a biological sensor.