Abstract:
The present invention relates to sulfur tolerant catalyst composites useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved NOx trap catalysts for use in diesel engines as well as lean burn gasoline engines. The sulfur tolerant NOx trap catalyst composites comprise a platinum component, a support, a NOx sorbent component, and a spinel material prepared by calcining an anionic clay material represented by the formula MmNn(OH)(2m+2n)Aa.bH2O, wherein the formula is defined herein. The sulfur tolerant NOx trap catalyst composites are highly effective with a sulfur containing fuel by trapping sulfur oxide contaminants which tend to poison conventional NOx trap catalysts used to abate other pollutants in the stream. The sulfur tolerant NOx trap catalyst composites are suitable for diesel engines because the composites can be regenerated at moderate temperatures with rich pulses, rather than at high temperatures.
Abstract:
The invention describes a process for catalytically destroying NOx and carbon monoxide present in oxygen-containing combustion products wherein methane serves as a reductant. The process comprises combusting a fuel source in the presence of oxygen to form combustion products comprising nitrogen oxides, carbon monoxide and oxygen; introducing methane into the combustion products in an amount such that the total amount of methane to nitrogen oxides present, expressed as a ratio, by volume is greater than about 0.1; and reacting the nitrogen oxides, carbon monoxide, methane and oxygen in the presence of an exchanged crystalline zeolite under conditions sufficient to convert the nitrogen oxides and carbon monoxide to gaseous nitrogen, water and carbon oxides. Suitable catalysts include zeolites having a silicon to aluminum ratio of greater than or equal to about 2.5 which zeolites are exchanged with a cation selected from the group consisting of gallium, niobium, cobalt, nickel, iron, chromium, rhodium and manganese.
Abstract:
The invention describes a catalytic process for destroying NOx from oxygen-containing combustion products wherein methane serves as a reductant. The process comprises contacting the NOx-containing combustion products with a desired amount of methane and oxygen in the presence of a metal-exchanged crystalline zeolite having a silicon to aluminum ratio of greater than or equal to about 2.5 under conditions sufficient to effect conversion to gaseous nitrogen, water and carbon oxides. The zeolites are exchanged with a cation selection from the group consisting of cobalt, nickel, iron, chromium, rhodium and manganese.
Abstract:
Provided are diesel exhaust components where palladium is segregated from a molecular sieve, specifically a zeolite, in a catalytic material. In the catalytic material, therefore, there are at least two layers: a palladium-containing layer that is substantially free of a molecular sieve and a hydrocarbon trap layer that comprises at least one molecular sieve and is substantially free of palladium. The palladium is provided on a high surface area, porous refractory metal oxide support. The catalytic material can further comprise a platinum component, where a minor amount of the platinum component is in the hydrocarbon trap layer, and a majority amount of the platinum component is in the palladium-containing layer. Systems and methods of using the same are also provided.
Abstract:
The present invention is directed to an exhaust gas treatment system and method for removing particulate matter and nitrogen oxides from diesel engine exhaust streams. More specifically, the present invention relates to an emission treatment system that effectively provides simultaneous treatment of the particulate matter, as well as the NOx and other gaseous components of diesel engine exhaust. The emission treatment system uses an integrated soot filter coated with a catalyst washcoat composition comprising sub-micron particles, thereby providing an ultra-thin sub-micron washcoat layer showing improved catalyst performance without causing excessive backpressure.
Abstract:
Catalyzed soot filters comprising a wall flow monolith having microcracks and pores and a catalyst comprising support particles with particle sizes greater than about the size of the microcracks and less than about the size of the pores are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
Abstract:
An emission treatment system and method for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The emission treatment system includes a catalyzed soot filter comprising a wall flow monolith and a catalyst comprising support particles. The wall flow monolith may be washcoated with a slurry comprising catalytic support particles without applying a passivation layer to the wall flow monolith.
Abstract:
Provided are diesel exhaust components where palladium is segregated from a molecular sieve, specifically a zeolite, in a catalytic material. In the catalytic material, therefore, there are at least two layers: a palladium-containing layer that is substantially free of a molecular sieve and a hydrocarbon trap layer that comprises at least one molecular sieve and is substantially free of palladium. The palladium is provided on a high surface area, porous refractory metal oxide support. The catalytic material can further comprise a platinum component, where a minor amount of the platinum component is in the hydrocarbon trap layer, and a majority amount of the platinum component is in the palladium-containing layer. Systems and methods of using the same are also provided.
Abstract:
Catalyzed soot filters comprising a wall flow monolith having microcracks and pores and a catalyst comprising support particles with particle sizes greater than about the size of the microcracks and less than about the size of the pores are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
Abstract:
Provided is an emissions treatment system for an exhaust stream, having a NOx storage reduction (NSR) catalyst with a NOx sorbent at a concentration of at least 0.1 g/in3 and a platinum group metal component dispersed on a refractory metal oxide support; and, an SCR catalyst disposed downstream of the NSR catalyst. The emissions treatment system is advantageously used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines.
Abstract translation:提供了一种排气流的排放处理系统,其具有浓度为至少0.1g / in 3的NOx吸附剂和分散在难熔金属氧化物载体上的铂族金属组分的NOx储存还原(NSR)催化剂; 以及设置在NSR催化剂下游的SCR催化剂。 排放物处理系统有利地用于处理来自柴油发动机和贫燃汽油发动机的废气流。