Abstract:
The present invention relates to sulfur tolerant catalyst composites useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved NOx trap catalysts for use in diesel engines as well as lean burn gasoline engines. The sulfur tolerant NOx trap catalyst composites comprise a platinum component, a support, a NOx sorbent component, and a spinel material prepared by calcining an anionic clay material represented by the formula MmNn(OH)(2m+2n)Aa.bH2O, wherein the formula is defined herein. The sulfur tolerant NOx trap catalyst composites are highly effective with a sulfur containing fuel by trapping sulfur oxide contaminants which tend to poison conventional NOx trap catalysts used to abate other pollutants in the stream. The sulfur tolerant NOx trap catalyst composites are suitable for diesel engines because the composites can be regenerated at moderate temperatures with rich pulses, rather than at high temperatures.
Abstract:
The invention describes a process for catalytically destroying NOx and carbon monoxide present in oxygen-containing combustion products wherein methane serves as a reductant. The process comprises combusting a fuel source in the presence of oxygen to form combustion products comprising nitrogen oxides, carbon monoxide and oxygen; introducing methane into the combustion products in an amount such that the total amount of methane to nitrogen oxides present, expressed as a ratio, by volume is greater than about 0.1; and reacting the nitrogen oxides, carbon monoxide, methane and oxygen in the presence of an exchanged crystalline zeolite under conditions sufficient to convert the nitrogen oxides and carbon monoxide to gaseous nitrogen, water and carbon oxides. Suitable catalysts include zeolites having a silicon to aluminum ratio of greater than or equal to about 2.5 which zeolites are exchanged with a cation selected from the group consisting of gallium, niobium, cobalt, nickel, iron, chromium, rhodium and manganese.
Abstract:
The invention describes a catalytic process for destroying NOx from oxygen-containing combustion products wherein methane serves as a reductant. The process comprises contacting the NOx-containing combustion products with a desired amount of methane and oxygen in the presence of a metal-exchanged crystalline zeolite having a silicon to aluminum ratio of greater than or equal to about 2.5 under conditions sufficient to effect conversion to gaseous nitrogen, water and carbon oxides. The zeolites are exchanged with a cation selection from the group consisting of cobalt, nickel, iron, chromium, rhodium and manganese.
Abstract:
Catalyzed soot filters comprising a wall flow monolith having porous walls, a first washcoat permeating the porous walls and a second washcoat on the porous walls are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
Abstract:
Provided is a catalyst composition, in particular a diesel oxidation catalyst, for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO). More particularly, the present invention is directed to a catalyst structure comprising at least two, specifically three distinct layers, at least one of which contains an oxygen storage component (OSC) that is present in a layer separate from the majority of the platinum group metal (PGM) components, such as palladium and platinum.
Abstract:
Catalyzed soot filters comprising a wall flow monolith having porous walls, a first washcoat permeating the porous walls and a second washcoat on the porous walls are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
Abstract:
Described is a catalyzed soot filter wherein the inlet coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the outlet coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the outlet coating is lower than the Pt concentration in the inlet coating and wherein the weight ratio of Pt:Pd in the outlet coating is in the range of from 0:1 to 2:1; and wherein the inlet coating and the outlet coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.5 to 1.5, calculated as ratio of the loading of the inlet coating (in g/inch3 (g/(2.54 cm)3)):loading of the outlet coating (in g/inch3 (g/(2.54 cm)3)). Systems include such catalyzed soot filters, methods of diesel engine exhaust gas treatment and methods of manufacturing catalyzed soot filters are also described.
Abstract translation:描述了一种催化烟尘过滤器,其中过滤器的入口涂层包括包含铂(Pt)和任选的钯(Pd)的氧化催化剂,其中过滤器的出口涂层包含包含Pd和任选的Pt的氧化催化剂,其中Pt浓度 在出口涂层中的入口涂层中的Pt浓度低于出口涂层中Pt:Pd的重量比在0:1至2:1的范围内; 并且其中入口涂层和出口涂层以0.5至1.5的涂层负载率存在于壁流动基材上,以入口涂层的负载比计算(g / inch 3(g /(2.54 cm)3)):出口涂层的负载(g / inch 3(g /(2.54cm)3)))。 还描述了系统包括这种催化烟灰过滤器,柴油发动机废气处理方法和制造催化烟灰过滤器的方法。
Abstract:
Provided is a catalyst composition, in particular a diesel oxidation catalyst, for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO). More particularly, the present invention is directed to a catalyst structure comprising at least two, specifically three distinct layers, at least one of which contains an oxygen storage component (OSC) that is present in a layer separate from the majority of the platinum group metal (PGM) components, such as palladium and platinum.
Abstract:
The invention describes a highly efficient catalytic pollution control process for removing N.sub.2 O from gaseous mixtures. The catalytic process, which is substantially unaffected by the presence of oxygen, comprises contacting an N.sub.2 O-containing gaseous mixture with a catalyst comprising a crystalline zeolite which, at least in part, is composed of five membered rings having a structure type selected from the group consisting of BETA, MOR, MFI, MEL and FER wherein the crystalline zeolite has been at least partially ion-exchanged with a metal selected from the group consisting of copper, cobalt, rhodium, iridium, ruthenium and palladium under conditions sufficient to convert the N.sub.2 O into gaseous nitrogen and gaseous oxygen.
Abstract:
Provided are diesel exhaust components where palladium is segregated from a molecular sieve, specifically a zeolite, in a catalytic material. In the catalytic material, therefore, there are at least two layers: a palladium-containing layer that is substantially free of a molecular sieve and a hydrocarbon trap layer that comprises at least one molecular sieve and is substantially free of palladium. The palladium is provided on a high surface area, porous refractory metal oxide support. The catalytic material can further comprise a platinum component, where a minor amount of the platinum component is in the hydrocarbon trap layer, and a majority amount of the platinum component is in the palladium-containing layer. Systems and methods of using the same are also provided.