Abstract:
Disclosed herein are shelf-stable, clear liquid nutritional compositions having a pH ranging from 2.5 to 4.6 and comprising water; at least one source of EGCg in an amount sufficient to provide 200-1700 mg/L of EGCg; and at least one source of protein in an amount sufficient to provide 25-45 g/L of total protein. The shelf-stable, clear liquid nutritional compositions lose no more than 20% by weight solids of the EGCg content present in the initial formulation of the compositions to epimerization, degradation, or both epimerization and degradation during heat sterilization. In certain embodiments, the loss of EGCg is exhibited by the amount of epimerization product GCg present in the shelf-stable, clear liquid nutritional composition following heat sterilization. Methods for preparing the shelf-stable, clear liquid nutritional compositions are also disclosed herein.
Abstract:
A nutritional supplement powder and method of supplementing the nutritional value of a food or beverage is provided. The nutritional supplement powder includes a protein system, vitamins, minerals, and fiber. The protein system has a water solubility of at least about 70% at room temperature. The nutritional supplement powder is essentially free of divalent ions of copper, iron, and zinc, and is also essentially free of vitamin C. When added to a food or beverage, the nutritional supplement powder does not substantially change the organoleptic properties of the food or beverage.
Abstract:
A nutritional supplement powder and method of supplementing the nutritional value of a food or beverage is provided. The nutritional supplement powder includes a protein system, vitamins, minerals, and fiber. The protein system has a water solubility of at least about 70% at room temperature. The nutritional supplement powder is essentially free of divalent ions of copper, iron, and zinc, and is also essentially free of vitamin C. When added to a food or beverage, the nutritional supplement powder does not substantially change the organoleptic properties of the food or beverage.
Abstract:
A nutritional composition including an oxidizable component and a water-soluble plant extract is provided. The water-soluble plant extract includes rosmarinic acid and has a total phenolic content, such that a ratio of the total phenolic content to the rosmarinic acid is between about 1.1:1 to about 3.5:1. A method of reducing off-flavors and aromas in a nutritional composition having an oxidizable component is also provided.
Abstract:
Disclosed embodiments provide low viscosity, high caloric density liquid nutritional compositions. The use of non-micellar milk protein in combination with hydrolyzed caseinate and unique formulation methods allow for improved organoleptic qualities and the production of liquid nutritional compositions displaying low viscosity along with a high caloric density.
Abstract:
Liquid nutritional compositions have an off-white color with a Hunter L value not less than 68, and comprise (a) a protein; (b) a carbohydrate; (c) an oxidizable fish oil containing an omega-3 polyunsaturated fatty acid; (d) rosmarinic acid; and (e) ferric iron comprising ferric orthophosphate and/or ferric pyrophosphate. The liquid nutritional compositions exhibit reduced off-flavors and aromas typically encountered in compositions including fish oil.
Abstract:
Disclosed herein are shelf-stable, clear liquid nutritional compositions having a pH ranging from 2.5 to 4.6 and comprising water; at least one source of EGCg in an amount sufficient to provide 200-1700 mg/L of EGCg; and at least one source of protein in an amount sufficient to provide 25-45 g/L of total protein. The shelf-stable, clear liquid nutritional compositions lose no more than 20% by weight solids of the EGCg content present in the initial formulation of the compositions to epimerization, degradation, or both epimerization and degradation during heat sterilization. In certain embodiments, the loss of EGCg is exhibited by the amount of epimerization product GCg present in the shelf-stable, clear liquid nutritional composition following heat sterilization. Methods for preparing the shelf-stable, clear liquid nutritional compositions are also disclosed herein.
Abstract:
Disclosed herein are shelf-stable, clear liquid nutritional compositions having a pH ranging from 2.5 to 4.6 and comprising water; at least one source of EGCg in an amount sufficient to provide 200-1700 mg/L of EGCg; and at least one source of protein in an amount sufficient to provide 25-45 g/L of total protein. The shelf-stable, clear liquid nutritional compositions lose no more than 20% by weight solids of the EGCg content present in the initial formulation of the compositions to epimerization, degradation, or both epimerization and degradation during heat sterilization. In certain embodiments, the loss of EGCg is exhibited by the amount of epimerization product GCg present in the shelf-stable, clear liquid nutritional composition following heat sterilization. Methods for preparing the shelf-stable, clear liquid nutritional compositions are also disclosed herein.
Abstract:
A liquid nutritional composition including 5-methyltetrahydrofolic acid (5-MTHF) is provided. The liquid nutritional composition also includes ascorbic acid and a protein system containing methionine to inhibit or reduce oxidation of the 5-MTHF and provide an active folate level of the liquid nutritional composition that remains stable over the shelf life of the liquid nutritional composition.
Abstract:
A method of reducing a pathogenic microorganism population in a powdered nutritional food composition is described herein. The powdered nutritional food composition includes a fat, a protein, and a carbohydrate. The method includes forming an emulsion of the powdered nutritional food composition and extruding the emulsified powdered nutritional food composition at a temperature of less than about 100° C. The method produces at least a 5 log reduction in the pathogenic microorganism population in the extruded powdered nutritional food composition. The extruded powdered nutritional food composition has a water activity level of about 0.3 to about 0.95.