Abstract:
Methods and systems for purifying one or more microbial cells and/or viruses from a biological sample are provided. The biological sample is added to a well disposed in a medium. A potential is applied across the medium to cause the contaminants to enter one or more walls of the well, and retain the microbial cells and/or viruses in the well. The microbial cells and/or viruses can be removed from the well, and optionally adhered or fixed to a surface, or detected. In one embodiment, the microbial cells and/or viruses are retained in the well by embedding in the medium. The medium including the embedded microbial cells and/or viruses may be excised or otherwise removed and transferred to a glass slide or other solid surface. In some examples, a biological sample containing contaminants and one or more microbial cells is introduced to a well disposed in a porous filter medium, wherein the porous filter medium includes pores smaller than the one or more microbial cells, thereby preventing the one or more microbial cells from entering the porous filter medium.
Abstract:
Systems and methods for automated biological sample preparation for use in rapid identification and antimicrobial susceptibility testing of microorganisms, such as bacteria and fungi, are provided.
Abstract:
A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
Abstract:
A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing. Automated quality control test components and methods of their use are also disclosed.
Abstract:
A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
Abstract:
A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
Abstract:
Methods and systems for purifying one or more microbial cells and/or viruses from a biological sample are provided. The biological sample is added to a well disposed in a medium. A potential is applied across the medium to cause the contaminants to enter one or more walls of the well, and retain the microbial cells and/or viruses in the well. The microbial cells and/or viruses can be removed from the well, and optionally adhered or fixed to a surface, or detected. In one embodiment, the microbial cells and/or viruses are retained in the well by embedding in the medium. The medium including the embedded microbial cells and/or viruses may be excised or otherwise removed and transferred to a glass slide or other solid surface. In some examples, a biological sample containing contaminants and one or more microbial cells is introduced to a well disposed in a porous filter medium, wherein the porous filter medium includes pores smaller than the one or more microbial cells, thereby preventing the one or more microbial cells from entering the porous filter medium.
Abstract:
A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing. Automated quality control test components and methods of their use are also disclosed.