Abstract:
An instrument for measuring and analyzing surface plasmon resonance (SPR) and/or surface plasmon coupled emission on an electro-optic grating-coupled sensor surface is described herein. The sensor chip achieves SPR through a grating-coupled approach, with variations in the local dielectric constant at regions of interest (ROI) at the sensor surface detected as a function of the intensity of light reflecting from these ROI. Unlike other grating-based approaches, the metal surface is sufficiently thin that resonant conditions are sensitive to dielectric constant changes both above and below the metal surface (like the Kretschmann configuration). Dielectric constant shifts that occur as mass accumulates on the surface can be returned to reference intensities by applying voltage across the underlying electro-optic polymer. Approaches to the development of the sensor surfaces are described, as are software and hardware features facilitating sample handling, data gathering, and data analysis by this solid-state approach.
Abstract:
An instrument for measuring and analyzing surface plasmon resonance (SPR) and/or surface plasmon coupled emission on an electro-optic grating-coupled sensor surface is described herein. The sensor chip achieves SPR through a grating-coupled approach, with variations in the local dielectric constant at regions of interest (ROI) at the sensor surface detected as a function of the intensity of light reflecting from these ROI. Unlike other grating-based approaches, the metal surface is sufficiently thin that resonant conditions are sensitive to dielectric constant changes both above and below the metal surface (like the Kretschmann configuration). Dielectric constant shifts that occur as mass accumulates on the surface can be returned to reference intensities by applying voltage across the underlying electro-optic polymer. Approaches to the development of the sensor surfaces are described, as are software and hardware features facilitating sample handling, data gathering, and data analysis by this solid-state approach.
Abstract:
An instrument for measuring and analyzing surface plasmon resonance (SPR) and/or surface plasmon coupled emission on an electro-optic grating-coupled sensor surface is described herein. The sensor chip achieves SPR through a grating-coupled approach, with variations in the local dielectric constant at regions of interest (ROI) at the sensor surface detected as a function of the intensity of light reflecting from these ROI. Unlike other grating-based approaches, the metal surface is sufficiently thin that resonant conditions are sensitive to dielectric constant changes both above and below the metal surface (like the Kretschmann configuration). Dielectric constant shifts that occur as mass accumulates on the surface can be returned to reference intensities by applying voltage across the underlying electro-optic polymer. Approaches to the development of the sensor surfaces are described, as are software and hardware features facilitating sample handling, data gathering, and data analysis by this solid-state approach.
Abstract:
Plasmonically-enhanced catalytic surfaces and accompanying optics are described herein. These elements facilitate efficient coupling of light energy into a photocatalytic system by way of a surface plasmon. Various compatible optical configurations are presented, with an emphasis on the broadband coupling of light into a single plasmon mode. In an example embodiment, dispersive optics are used to direct polychromatic light onto a grating-embossed SPR-active surface. Dispersive optics allow resonance to be achieved at a wide range of incident wavelengths. Energy then transfers from the excited plasmon to an adjacent photocatalyst. The plasmon mode thus acts as a “funnel” of broadband light energy to the catalytic materials. High-efficiency incoupling and outcoupling from the plasmon mode suggest overall enhancement of catalytic activity, and broad applicability is anticipated due to the inherent flexibility of the system. The catalytic surfaces and optical components can be fabricated as sheets or 3D arrays, justifying industrial-scale manufacturing.
Abstract:
Plasmonically-enhanced catalytic surfaces and accompanying optics are described herein. These elements facilitate efficient coupling of light energy into a photocatalytic system by way of a surface plasmon. Various compatible optical configurations are presented, with an emphasis on the broadband coupling of light into a single plasmon mode. In an example embodiment, dispersive optics are used to direct polychromatic light onto a grating-embossed SPR-active surface. Dispersive optics allow resonance to be achieved at a wide range of incident wavelengths. Energy then transfers from the excited plasmon to an adjacent photocatalyst. The plasmon mode thus acts as a “funnel” of broadband light energy to the catalytic materials. High-efficiency incoupling and outcoupling from the plasmon mode suggest overall enhancement of catalytic activity, and broad applicability is anticipated due to the inherent flexibility of the system. The catalytic surfaces and optical components can be fabricated as sheets or 3D arrays, justifying industrial-scale manufacturing.
Abstract:
An instrument for measuring and analyzing surface plasmon resonance on a sensor surface has a polarized light source optically connected to the sensor surface by a plurality of optical elements, including in one embodiment an optical telescope that transfers light from a rotatable reflecting surface to the sensor surface. Selective positioning of a cylindrical lens into a first position within the path of light transforms collimated light to a rectangular wedge that is incident upon the sensor surface at numerous angles. In another embodiment, the light source is operated as a laser to excite fluorescence on the sensor surface and the fluorescence is selectively directed to a detector by appropriate optical elements positioned in specific configurations.
Abstract:
An instrument for measuring and analyzing surface plasmon resonance (SPR) and/or surface plasmon coupled emission on an electro-optic grating-coupled sensor surface is described herein. The sensor chip achieves SPR through a grating-coupled approach, with variations in the local dielectric constant at regions of interest (ROI) at the sensor surface detected as a function of the intensity of light reflecting from these ROI. Unlike other grating-based approaches, the metal surface is sufficiently thin that resonant conditions are sensitive to dielectric constant changes both above and below the metal surface (like the Kretschmann configuration). Dielectric constant shifts that occur as mass accumulates on the surface can be returned to reference intensities by applying voltage across the underlying electro-optic polymer. Approaches to the development of the sensor surfaces are described, as are software and hardware features facilitating sample handling, data gathering, and data analysis by this solid-state approach.
Abstract:
An instrument for measuring and analyzing surface plasmon resonance on a sensor surface has a polarized light source optically connected to the sensor surface by a plurality of optical elements, including in one embodiment an optical telescope that transfers light from a rotatable reflecting surface to the sensor surface. Selective positioning of a cylindrical lens into a first position within the path of light transforms collimated light to a rectangular wedge that is incident upon the sensor surface at numerous angles. In another embodiment, the light source is operated as a laser to excite fluorescence on the sensor surface and the fluorescence is selectively directed to a detector by appropriate optical elements positioned in specific configurations.