Abstract:
The present disclosure relates to a system for installing a floor finishing material using an autonomous driving robot According to the present disclosure, there is provided a system for installing a floor finishing material using autonomous driving including: a floor surface cleaning and adhesive application robot that cleans a floor surface and applies adhesive while moving with autonomous driving; a finishing material installation robot that installs the floor finishing material on an upper side of the adhesive surface; a finishing material loading robot that loads the floor finishing material loaded in an installation site, on a pallet; a finishing material transport robot that transports and delivers the loaded floor finishing material to the finishing material installation robot; and a 3D positioning device that sets a position thereof as an origin and recognizes positions of a plurality of active markers installed in a work site.
Abstract:
Provided are a robot for managing a structure, and a method of controlling the robot. The robot for maintaining and repairing the structure measures a luminance value by capturing an image of the structure, or measures depth information of the structure by using a laser sensor or stereo vision, determines a protruding portion or depressed portion of the structure by using the measured luminance value or the measured depth information. Also, the robot removes the determined protruding portion and fills the determined depressed portion by using a combination hardener. Accordingly, protrusion, depression, and crack of a wall caused by deterioration or poor construction of the structure may be automatically found and repaired so as to efficiently manage the structure.
Abstract:
Provided are an upper limb rehabilitation robot including: a sensing member that is mounted and fixed to an upper limb of a user and captures motion of the upper limb according to a movement intention of the user; a motion control unit that is electrically connected to the sensing member, calculates a movement direction, a distance or angle, a speed, and an auxiliary force (target value) needed for the upper limb to move, intended by the upper limb, based on the motion captured by using the sensing member, and generates and outputs a control signal according to the calculated movement direction, distance or angle, speed, and auxiliary force (target value); and a multi-joint robot, to an end of an arm of which the sensing member is coupled, wherein the multi-joint robot guides movement of the upper limb fixed to the sensing member to selectively move or rotate toward a food tray placed at a designated position of a table along an X-axis, a Y-axis, or a Z-axis and provides an assistance force to the upper limb.
Abstract:
An apparatus for remotely controlling field robots, includes: an interface unit; a work command generator generating a work command signal for operating field robots; an autonomous command generator which generates an autonomous operation command signal for controlling an operation of a second field robot when a user selects a following mode and the work command generator generates a work command signal for a first field robot to correspond to the following mode, or generates an autonomous operation command signal for controlling operations of the first field robot and the second field robot in order to operate an object of work when the user selects an object mode and the work command generator generates a work command signal for the object of work to correspond to the object mode; and a communication unit transmitting the generated autonomous operation command signal to the first field robot and the second field robots.
Abstract:
An apparatus for remotely controlling field robots, including: an interface unit; a work command generator generating a work command signal for operating field robots; an autonomous command generator which generates an autonomous operation command signal for controlling an operation of a second field robot when a user selects a following mode and the work command generator generates a work command signal for a first field robot to correspond to the following mode, or generates an autonomous operation command signal for controlling operations of the first field robot and the second field robot in order to operate an object of work when the user selects an object mode and the work command generator generates a work command signal for the object of work to correspond to the object mode; and a communication unit transmitting the generated autonomous operation command signal to the first and second field robots.