Abstract:
A system for interpreting terahertz radiation includes a terahertz transmitter configured to output a pulse of terahertz radiation and a terahertz receiver configured to receive at least a portion of the pulse of radiation from the terahertz transmitter. The terahertz receiver is configured to output a signal based on the radiation received by the terahertz receiver.
Abstract:
The present invention includes a semiconductor epitaxial structure optimized for photoconductive free space terahertz generation and detection; and amplifier circuits for photoconductively sampled terahertz detection which may employ the optimized epitaxial structures.
Abstract:
A system for dispersion compensation in a terahertz system includes an optical fiber configured to transmit an optical pulse, a compensator optically coupled to the optical fiber, the compensator configured to compensate for a dispersion of the optical pulse caused as the optical pulse propagates through the optical fiber, and an optically induced terahertz device optically coupled to the compensator, whereby the optically induced terahertz device is configured to transmit or receive terahertz radiation.
Abstract:
A system for determining a material property at an interface between a first layer and a second layer includes a transmitter outputting electromagnetic radiation to the sample, a receiver receiving electromagnetic radiation that was reflected by or transmitted though the sample, and a data acquisition device. The data acquisition device is configured to digitize the electro-magnetic radiation reflected by or transmitted though the sample to yield waveform data, wherein the waveform data represents the radiation reflected by or transmitted though the sample, the waveform data having a first magnitude, a second magnitude and a third magnitude. The material property to be determined is generally the adhesive strength between the first and second layers.
Abstract:
A system for determining a material property at an interface between a first layer and a second layer includes a transmitter outputting electromagnetic radiation to the sample, a receiver receiving electromagnetic radiation that was reflected by or transmitted though the sample, and a data acquisition device. The data acquisition device digitizes the electromagnetic radiation to yield waveform data. The waveform data represents the radiation reflected by or transmitted though the sample. The material property to be determined is generally the adhesive strength between the first and second layers.
Abstract:
A system and method to measure, with increased precision, the transit time position(s) of pulses in a time domain data. An example data set would be the transit time of pulses in Time-Domain Terahertz (TD-THz) data. The precision of the pulse timing directly affects the precision of determined sample properties measurements (e.g., thickness). Additionally, an internal calibration etalon structure and algorithm method provides for continuous system precision/accuracy check method to increase sample measurement integrity. The etalon structure can improve the precision of sample property measurements (e.g., absolute thickness). Various hardware and system implementations of the above are described.
Abstract:
A system for reducing effects relating to stretching of an optical fiber includes an optical control source, the optical source outputting an optical signal, a terahertz transmitter and receiver both being optically coupled to the optical source, and a means for providing the optical signal to both the terahertz transmitter and terahertz receiver such that the terahertz receiver is synchronized to the terahertz transmitter by the optical signal. The means prevents the stretching of an fiber carrying the optical signal provided to the terahertz transmitter or terahertz receiver or allows for the stretching an optical fiber such that the terahertz receiver will still be synchronized to the terahertz transmitter by the optical signal.
Abstract:
A system for reducing effects relating to stretching of an optical fiber includes an optical control source, the optical source outputting an optical signal, a terahertz transmitter and receiver both being optically coupled to the optical source, and a means for providing the optical signal to both the terahertz transmitter and terahertz receiver such that the terahertz receiver is synchronized to the terahertz transmitter by the optical signal. The means prevents the stretching of an fiber carrying the optical signal provided to the terahertz transmitter or terahertz receiver or allows for the stretching an optical fiber such that the terahertz receiver will still be synchronized to the terahertz transmitter by the optical signal.
Abstract:
A system and method to measure, with increased precision, the transit time position(s) of pulses in a time domain data. An example data set would be the transit time of pulses in Time-Domain Terahertz (TD-THz) data. The precision of the pulse timing directly affects the precision of determined sample properties measurements (e.g., thickness). Additionally, an internal calibration etalon structure and algorithm method provides for continuous system precision/accuracy check method to increase sample measurement integrity. The etalon structure can improve the precision of sample property measurements (e.g., absolute thickness). Various hardware and system implementations of the above are described.
Abstract:
A system to detect an article includes one or more terahertz modules. Each module either generates or receives, or both generates and receives, terahertz radiation. Some of the terahertz radiation is reflected from the article and the remainder of the terahertz radiation is transmitted through the article. A processor analyzes the reflected and transmitted terahertz radiation to characterize the article.