Abstract:
A conflict-resolution system for operating an automated vehicle includes an intersection detector, a vehicle-detection device, and a controller. The intersection detector is suitable to mount on a host-vehicle. The detector used to determine when the host-vehicle is stopped at or approaches an intersection. The vehicle-detection device is suitable to mount on the host-vehicle. The device is used to detect when an other-vehicle has stopped at or approaches the intersection at the same instant as the host-vehicle. The controller is in communication with the detector and the device. The controller is configured to determine a wait-time for the host-vehicle to wait before attempting to proceed into the intersection when right-of-way rules are unable to determine when the host-vehicle should proceed into the intersection.
Abstract:
A system for automated operation of a host-vehicle includes a controller configured to operate the host-vehicle during automated operation of the host-vehicle. The controller is configured to do so in accordance with a parameter stored in the controller. The controller is also configured to determine when an operator of the host-vehicle uses a vehicle-control-input to override the controller and thereby operate the host-vehicle in a manner different from that which is in accordance with the parameter. The controller is also configured to modify the parameter in accordance with the manner of the operator.
Abstract:
A cooperative-vehicle system suitable to operate an automated vehicle in a courteous or cooperative manner includes an object-detector and a controller. The object-detector is used by the host-vehicle to detect an other-vehicle attempting to enter a travel-lane traveled by the host-vehicle. The controller is in communication with the object-detector. The controller is configured to control motion of the host-vehicle. The controller is also configured to adjust a present-vector of the host-vehicle to allow the other-vehicle to enter the travel-lane. The decision to take some action to allow the other vehicle to enter the travel-lane may be further based on secondary considerations such as how long the other-vehicle has waited, a classification of the other-vehicle (e.g. an ambulance), an assessment of how any action by the host-vehicle would affect nearby vehicles, the intent of the other-vehicle, and/or a measure traffic-density proximate to the host-vehicle.
Abstract:
A sensor mounting arrangement suitable for an autonomous or automated vehicle having an aerodynamic generally rounded or curved front perimeter surface symmetrically arranged relative to a longitudinal axis of the vehicle. The sensor is mounted so as to be tipped toward a more optimal sensing direction, bringing a leading portion outboard of, and a trailing portion inboard of, the ideal front perimeter surface, but putting the sensor in a more optimal sensing orientation. A transparent cover protects the sensor and blends aerodynamically into the front perimeter body surface.
Abstract:
A lidar unit is mounted to an autonomous vehicle within an existing rear side window opening. An opaque inner panel blocks light, while the exterior window covers and protects the lidar unit, maintaining the original appearance and aerodynamic form of the vehicle exterior, in conjunction with the opaque inner panel.
Abstract:
A gesture detection system suitable to operate an automated vehicle includes a gesture-detection-device, a pedestrian-detection-device, and a controller. The gesture-detection-device is used to detect a gesture made by an occupant of a host-vehicle. The pedestrian-detection-device is used to detect a pedestrian proximate to the host-vehicle. The controller is in communication with the gesture-detection-device and the pedestrian-detection-device. The controller is configured to control movement of the host-vehicle along a travel-path of the host-vehicle. The controller waits to move the host-vehicle until after the pedestrian crosses the travel-path when the occupant gestures to the pedestrian to proceed across the travel-path.
Abstract:
A cognitive-driver-assist system includes an object-detection device, an operator-detection device, a control-override device, and a controller. The object-detection device is operable to detect when an object is proximate to a host-vehicle. The operator-detection device is operable to determine when an operator of the host-vehicle is aware of the object. The control-override device is operable to limit operator-authority of the operator while the operator is driving the host-vehicle. The controller is configured to operate the control-override device in accordance with the operator-authority to override the operator and avoid interference with the object when the operator is not aware of the object.
Abstract:
A cooperative-vehicle system suitable to operate an automated vehicle in a courteous or cooperative manner includes an object-detector and a controller. The object-detector is used by the host-vehicle to detect an other-vehicle attempting to enter a travel-lane traveled by the host-vehicle. The controller is in communication with the object-detector. The controller is configured to control motion of the host-vehicle. The controller is also configured to adjust a present-vector of the host-vehicle to allow the other-vehicle to enter the travel-lane. The decision to take some action to allow the other vehicle to enter the travel-lane may be further based on secondary considerations such as how long the other-vehicle has waited, a classification of the other-vehicle (e.g. an ambulance), an assessment of how any action by the host-vehicle would affect nearby vehicles, the intent of the other-vehicle, and/or a measure traffic-density proximate to the host-vehicle.
Abstract:
A map-update system to update maps used by an automated vehicle includes an object-detection-device, an operator-communication-device, and a controller. The object-detection-device is used to detect objects proximate to a vehicle. The operator-communication-device is used to communicate an inquiry to an operator and detect a response from the operator. The controller is in communication with the object-detection-device and the operator-communication-device. The controller is configured to navigate the vehicle in accordance with a digitized-map, determine when an object detected by the object-detection-device does not correspond to an expected-feature present in the digitized-map, output an inquiry regarding the object to the operator via the operator-communication-device, and update the digitized-map based on the response from the operator.