Abstract:
This disclosure relates to a lubricating oil (e.g., gear oil) for use in an electric or hybrid vehicle. The lubricating oil has a composition including one or more lubricating oil base stocks as a major component, and one or more lubricating oil additives, as a minor component. The one or more lubricating oil base stocks include at least one Group IV base oil, or at least one Group V base oil. The lubricating oil has a kinematic viscosity (KV100) from 1 cSt to 7 cSt at 100° C. as determined by ASTM D-445, and an electrical conductivity at room temperature of less than 15,000 pS/m as determined by ASTM D-2624. This disclosure also relates to methods for producing a lubricating oil for a transmission, gear train, gear set, gear box, or gears of an electric vehicle powertrain and methods for improving energy efficiency, while maintaining or improving wear control.
Abstract:
A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that contains at least one branched hydrocarbon having at least about 25% of the carbons in the form of methyl groups, or at least one polyol ester of at least one branched mono-carboxylic acid. A lubricating engine oil having a composition that contains at least one branched hydrocarbon having at least about 25% of the carbons in the form of methyl groups, or at least one polyol ester of at least one branched mono-carboxylic acid. The lubricating engine oils are useful as passenger vehicle engine oil (PVEO) products.
Abstract:
A method for improving corrosion protection and friction coefficient in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition comprising a lubricating oil base stock as a major component, and a mixture of (i) at least one organic molybdenum compound, and (ii) at least one borated ester, as a minor component. Corrosion protection and friction coefficient are improved as compared to corrosion protection and friction coefficient achieved using a lubricating oil containing a minor component other than the mixture of (i) at least one organic molybdenum compound, and (ii) at least one borated ester.
Abstract:
A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that contains (i) a lubricating oil base stock comprising at least one ester including at least one group selected from the group consisting of Formula (1), Formula (2), and Formula (3): The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
Abstract:
A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by introducing to a combustion chamber of the engine from 0.1 to 5% by volume of the gasoline used a lubricating oil as a formulated oil, said formulated oil having a composition comprising (i) a major amount of a lubricating oil base stock comprising at least 80% by weight of one branched ester having at least 15% of the total carbons in the form of methyl groups, and (ii) a minor amount of at least one ashless amine phosphate antiwear additive. Also provided is a lubricating engine oil for high compression spark ignition engines including (i) a major amount of a lubricating oil base stock comprising at least 80% by weight formula I below: esterified (per —OH basis) with 25 to 100% isobutyric acid and 0 to 75% 3,5,5-trimethylhexanoic acid, wherein R is a H, methyl, ethyl, isopropyl, or isobutyl, and (ii) a minor amount of at least one amine phosphate ashless antiwear additive.
Abstract:
Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
Abstract:
A lubricant composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine lubricated with a formulated oil. The formulated oil has a composition including at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A fuel composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine by using a fuel additive composition in a gasoline fuel composition. The fuel additive composition contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
Abstract:
Provided is a lubricating oil for electric and hybrid vehicles. The lubricating oil has a composition including at least 80 wt % of a lubricating base oil, from 0.8 to 5 wt % of one or more metal detergents, from 0 to 5 wt % of one or more dispersants, from 0 to 1.5 wt % of zinc dialkyldithiophosphate antiwear agent, from 0 to 0.2 wt % of a molybdenum dialkyldithiocarbamate, from 0 to 2 wt % of a viscosity modifier based on active ingredient, and from 0.01 to 5 wt % of other lubricating oil additives. The lubricating oil has an electrical conductivity from 3,000 to 20,000 pS/m, and kinematic viscosity from 2 to 20 cSt at 100° C. This disclosure also relates to methods for producing the lubricating oil, methods for lubricating electric and hybrid vehicles, and methods for controlling electrical conductivity of a lubricating oil by using conductivity promoters and conductivity inhibitors.
Abstract:
Provided is a lubricating oil for electric and hybrid vehicles. The lubricating oil includes at least 80 wt % of a lubricating base oil, 0.5 to 5 wt % of one or more dispersants, 0 to 4 wt % of one or more neutral metal detergents, 0 to 1.5 wt % of zinc dialkyldithiophosphate, 0 to 0.2 wt % of molybdenum dialkyldithiocarbamate, 0 to 2 wt % of an active viscosity modifier, and 0.01 to 5 wt % of one or more other lubricating oil additives. The lubricating oil is essentially free of overbased metal detergents. The lubricating oil has an electrical conductivity from 50 to 3,000 pS/m and a kinematic viscosity from 2 to 20 cSt at 100° C. This disclosure also relates to methods for producing the lubricating oil, methods for lubricating electric and hybrid vehicles, and methods for controlling electrical conductivity of a lubricating oil by using conductivity promoters and conductivity inhibitors.
Abstract:
Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.