Abstract:
A LED package structure including a carrier substrate, a flip-chip LED and a molding compound is provided. The carrier substrate includes a main body and a patterned conductive layer embedded in the main body. The main body is composed of polymer material. The main body has a cavity, and a bottom surface of the cavity is aligned with an upper surface of the patterned conductive layer. A difference in coefficient of thermal expansion between the main body in a rubbery state and the patterned conductive layer is smaller than 30 ppm/° C. The flip-chip LED is disposed inside the cavity and electrically connected to the patterned conductive layer. The molding compound is disposed inside the cavity and encapsulates the flip-chip LED. A vertical distance between a top surface of the molding compound and the bottom surface of the cavity is smaller than or equal to a depth of the cavity.
Abstract:
A circuit board for driving a flip-chip light emitting chip is disclosed. The circuit board includes a metal substrate having a first surface and a second surface, the first surface including a first electrode area, a second electrode area and a heat conduction area; a first metal electrode formed on the first electrode area for providing a first voltage; a first insulation layer formed between the first metal electrode and the metal substrate; a second metal electrode formed on the second electrode area for providing a second voltage; a second insulation layer formed between the second metal electrode and the metal substrate; and a solder resist layer covering the first surface; wherein the heat conduction area is exposed from the solder resist layer.
Abstract:
A light emitting device includes a light source, a light source carrier and a circuit board. The circuit board is configured to provide power to the light source via the light source carrier. The circuit board includes a metal substrate having an upper surface, the upper surface including a first electrode area, a second electrode area and a heat conduction area; a first metal electrode formed on the first electrode area; a first insulation layer formed between the first metal electrode and the metal substrate; a second metal electrode formed on the second electrode area; a second insulation layer formed between the second metal electrode and the metal substrate; and a solder resist layer covering the upper surface of the metal substrate; wherein the heat conduction area is exposed from the solder resist layer, and the heat conduction area is connected to the light source carrier.
Abstract:
A light emitting device includes a light source, a light source carrier and a circuit board. The circuit board is configured to provide power to the light source via the light source carrier. The circuit board includes a metal substrate having an upper surface, the upper surface including a first electrode area, a second electrode area and a heat conduction area; a first metal electrode formed on the first electrode area; a first insulation layer formed between the first metal electrode and the metal substrate; a second metal electrode formed on the second electrode area; a second insulation layer formed between the second metal electrode and the metal substrate; and a solder resist layer covering the upper surface of the metal substrate; wherein the heat conduction area is exposed from the solder resist layer, and the heat conduction area is connected to the light source carrier.
Abstract:
A light emitting device includes a light source, a light source carrier and a circuit board. The circuit board is configured to provide power to the light source via the light source carrier. The circuit board includes a metal substrate having an upper surface, the upper surface including a first electrode area, a second electrode area and a heat conduction area; a first metal electrode formed on the first electrode area; a first insulation layer formed between the first metal electrode and the metal substrate; a second metal electrode formed on the second electrode area; a second insulation layer formed between the second metal electrode and the metal substrate; and a solder resist layer covering the upper surface of the metal substrate; wherein the heat conduction area is exposed from the solder resist layer, and the heat conduction area is connected to the light source carrier.
Abstract:
A LED package structure including a carrier substrate, a flip-chip LED and a molding compound is provided. The carrier substrate includes a main body and a patterned conductive layer embedded in the main body. The main body is composed of polymer material. The main body has a cavity, and a bottom surface of the cavity is aligned with an upper surface of the patterned conductive layer. A difference in coefficient of thermal expansion between the main body in a rubbery state and the patterned conductive layer is smaller than 30 ppm/° C. The flip-chip LED is disposed inside the cavity and electrically connected to the patterned conductive layer. The molding compound is disposed inside the cavity and encapsulates the flip-chip LED. A vertical distance between a top surface of the molding compound and the bottom surface of the cavity is smaller than or equal to a depth of the cavity.
Abstract:
The invention relates to a circuit structure of a flip-chip light emitting diode. It is provided for assembling of the flip-chip light emitting diode. Each flip-chip light emitting diode has at least two electrodes. The circuit structure defines a light emitting surface on a surface of a substrate, and the light emitting surface is provided with a plurality of reflective and conductive surfaces. The reflective and conductive surface is used for assembling of the electrodes of the flip-chip light emitting diode. At least one flip-chip light emitting diode is connected in series, parallel or series-parallel on the light emitting surface, wherein the total area of the reflective and conductive surface accounts for 80% to 99% of the area of the light emitting surface. Accordingly, the circuit structure of the flip-chip light emitting diode can efficiently improve the luminous efficiency of flip-chip light emitting diode device by adding a proportion of the area of the reflective conduction surfaces on the substrate of the flip-chip light emitting diode.
Abstract:
A light emitting diode (LED) package structure including a carrier substrate, a LED and an electrostatic protection device is provided. The carrier substrate includes two leadframes separated from each other and a reflective member. The reflective member encapsulates the leadframes and exposes a carrier surface of each of the leadframes. The reflective member has a cavity, and a bottom surface of the cavity is aligned with the carrier surface of each of the leadframes. The LED is disposed inside the cavity and bridges the leadframes. The electrostatic protection device is disposed inside the cavity and bridges the leadframes. The LED is connected in anti-parallel to the electrostatic protection device.
Abstract:
A light emitting device includes a light source, a light source carrier and a circuit board. The circuit board is configured to provide power to the light source via the light source carrier. The circuit board includes a metal substrate having an upper surface, the upper surface including a first electrode area, a second electrode area and a heat conduction area; a first metal electrode formed on the first electrode area; a first insulation layer formed between the first metal electrode and the metal substrate; a second metal electrode formed on the second electrode area; a second insulation layer formed between the second metal electrode and the metal substrate; and a solder resist layer covering the upper surface of the metal substrate; wherein the heat conduction area is exposed from the solder resist layer, and the heat conduction area is connected to the light source carrier.
Abstract:
A LED package structure including a carrier substrate, a flip-chip LED and a molding compound is provided. The carrier substrate includes a main body and a patterned conductive layer embedded in the main body. The main body is composed of polymer material. The main body has a cavity, and a bottom surface of the cavity is aligned with an upper surface of the patterned conductive layer. A difference in coefficient of thermal expansion between the main body in a rubbery state and the patterned conductive layer is smaller than 30 ppm/° C. The flip-chip LED is disposed inside the cavity and electrically connected to the patterned conductive layer. The molding compound is disposed inside the cavity and encapsulates the flip-chip LED. A vertical distance between a top surface of the molding compound and the bottom surface of the cavity is smaller than or equal to a depth of the cavity.