Abstract:
A light detection device of the present invention includes: a wiring board; a first support part disposed on a mounting surface of the wiring board; a Fabry-Perot interference filter having a first mirror part and a second mirror part between which a distance is variable and having an outer edge portion disposed in a first support region of the first support part; a light detector disposed on the mounting surface to face the first mirror part and the second mirror part on one side of the first support part; and a temperature detector disposed on the mounting surface, wherein the temperature detector is disposed on the mounting surface such that at least a part of the temperature detector overlaps a part of the Fabry-Perot interference filter when seen in a first direction perpendicular to the mounting surface and such that at least a part of the temperature detector overlaps a part of the first support part when seen in a second direction in which the first support part and the light detector are aligned with each other, and wherein a first distance between the temperature detector and the first support part in the second direction is smaller than a first width of the first support region in the second direction.
Abstract:
A wafer includes a substrate layer, a first mirror layer having a plurality of two-dimensionally arranged first mirror portions, and a second mirror layer having a plurality of two-dimensionally arranged second mirror portions. In the wafer, a gap is formed between the first mirror portion and the second mirror portion so as to form a plurality of Fabry-Perot interference filter portions. A wafer inspection method according to an embodiment includes a step of performing faulty/non-faulty determination of each of the plurality of Fabry-Perot interference filter portions, and a step of applying ink to at least part of a portion overlapping the gap when viewed in a facing direction on the second mirror layer of the Fabry-Perot interference filter portion determined as faulty.
Abstract:
A Fabry-Perot interference filter includes a substrate that has a first surface, a first laminate that has a first mirror portion, a second laminate that has a second mirror portion facing the first mirror portion via a gap, an intermediate layer that defines the gap between the first laminate and the second laminate, and a first terminal. The intermediate layer has a first inner surface surrounding the first terminal. The first inner surface is curved such that an edge portion of the intermediate layer on the substrate side is positioned on the first terminal side relative to an edge portion of the intermediate layer on a side opposite to the substrate.
Abstract:
A light detection device includes a Fabry-Perot interference filter provided with a light transmitting region on a predetermined line, a light detector disposed on one side with respect to the Fabry-Perot interference filter on the line, a package having an opening positioned on the other side with respect to the Fabry-Perot interference filter on the line, a light transmitting member provided in the package such that the opening is blocked, and a temperature control element having an endothermic region thermally connected to the Fabry-Perot interference filter and the light detector. The endothermic region is positioned on one side with respect to the light detector on the line.
Abstract:
A light detection device includes: a first support part disposed on a mounting surface of the wiring board; a Fabry-Perot interference filter disposed in a first support region of the first support part; and a temperature detector, wherein the temperature detector is disposed on the mounting surface such that at least a part of the temperature detector overlaps a part of the Fabry-Perot interference filter when seen in a first direction perpendicular to the mounting surface and such that at least a part of the temperature detector overlaps a part of the first support part when seen in a second direction in which the first support part and the light detector are aligned with each other, and wherein a first distance between the temperature detector and the first support part in the second direction is smaller than a first width of the first support region in the second direction.
Abstract:
A wafer includes a substrate layer, a first mirror layer having a plurality of two-dimensionally arranged first mirror portions, and a second mirror layer having a plurality of two-dimensionally arranged second mirror portions. A plurality of Fabry-Perot interference filter portions are formed in an effective area, in each of the plurality of Fabry-Perot interference filter portions a gap is formed between the first mirror portion and the second mirror portion. A plurality of dummy filter portions are formed in a dummy area disposed along an outer edge of the substrate layer and surrounding the effective area, in each of the plurality of dummy filter portions an intermediate layer is provided between the first mirror portion and the second mirror portion. At least the second mirror portion is surrounded by the first groove in each of the plurality of Fabry-Perot interference filter portions and the plurality of dummy filter portions.
Abstract:
The Fabry-Perot interference filter includes: a substrate having a first surface, a first laminate having a first mirror portion disposed on the first surface, a second laminate having a second mirror portion facing the first mirror portion with an air gap interposed therebetween, and an intermediate layer defining the air gap between the first and second laminate. The substrate has an outer edge portion positioned outside an outer edge of the intermediate layer when viewed from a direction perpendicular to the first surface. The second laminate further includes a covering portion covering the intermediate layer and a peripheral edge portion positioned on the first surface in the outer edge portion. The second mirror portion, the covering portion, and the peripheral edge portion are integrally formed so as to be continuous with each other. The peripheral edge portion is thinned along an outer edge of the outer edge portion.
Abstract:
A surface-enhanced Raman scattering unit comprises a measurement board used upon measurement; a surface-enhanced Raman scattering element, secured to the measurement board, having a substrate and an optical function part, formed on the substrate, for generating surface-enhanced Raman scattering; and a pressing member, secured to the measurement board, having a ring-shaped contact part contacting a peripheral part of the surface-enhanced Raman scattering element and pressing the surface-enhanced Raman scattering element toward the measurement board.
Abstract:
A SERS unit 1A comprises a SERS element 2 having a substrate 21 and an optical function part 20 formed on the substrate 21, the optical function part 20 for generating surface-enhanced Raman scattering; a transportation board 3 supporting the SERS element 2 during transportation, the SERS element 2 being removed from the transportation board 3 upon measurement; and a holding part 4 having a pinching part 41 pinching the SERS element 2 in cooperation with the transportation board 3, and detachably holding the SERS element 2 in the transportation board 3.
Abstract:
A suction method is provided as a method of performing, by using a suction collet, suction of a Fabry-Perot interference filter including a substrate and a laminated structure that is provided on the substrate and that includes a main surface facing the side opposite to the substrate, the method including a first step of arranging the suction collet so as to face the main surface, a second step of bringing the suction collet into contact with the Fabry-Perot interference filter after the first step, and a third step of suctioning the Fabry-Perot interference filter by using the suction collet after the second step.