Abstract:
A plasma processing apparatus, plasma processing method, and plasma processing analysis method in which a suitable combination of wavelength, time interval, and etching condition parameter for control to change etching conditions is determined among wavelengths, time intervals, and changeable parameters for spectroscopic measurement data in order to ensure stable etching conditions. Specifically, a regression equation which represents the correlation between emission intensity and etching result at a wavelength and a time interval is obtained for each of two or more combinations of wavelength, time interval, and etching condition parameter. Furthermore, for each of the combinations, the amount of change is calculated from the regression equation when the value set for the etching condition parameter is changed. Among the combinations, the combination for which the amount of change is the smallest is determined as the combination of wavelength, time interval, and changed etching condition parameter to be used for control.
Abstract:
A plasma processing apparatus including a processing chamber, a radio frequency power source, a monitoring unit, and a calculation unit is provided. In the processing chamber, etching target film is etched by using plasma. The radio frequency power source supplies radio frequency electric power. The monitoring unit monitors light emission of the plasma. The calculation unit estimates an etching amount of plasma etching of the etching target film based on an emission intensity and a correlation between the etching amount of the etching target film and the emission intensity, the emission intensity being obtained when removing, by using the plasma, a deposition film deposited as a result of the plasma etching.
Abstract:
A plasma processing method of processing layer structure previously formed on an upper surface of a wafer disposed in a processing chamber within a vacuum container and having a layer to be processed and an undercoating layer disposed under the layer by plasma in the processing chamber, includes a step of calculating an etching amount of the layer to be processed at time during processing of any wafer by using result of comparing real pattern data with detection pattern data obtained by combining two patterns of intensity having as parameter wavelength of interference light obtained by processing the layer structure containing three or more undercoating layers having different thickness and the layer to be processed in advance of the processing of the any wafer and areal pattern of intensity having as parameter the wavelength of the interference light obtained during processing of the layer structure on the any wafer.
Abstract:
The plasma processing apparatus includes a plasma processing unit that performs plasma processing of a sample and a control unit that controls the plasma processing. The control unit selects one of a plurality of the prediction models for predicting a result of the plasma processing based on a state of the plasma processing unit, and predicts the result of the plasma processing by using a selected prediction model.
Abstract:
A plasma apparatus of processing a wafer disposed in a processing chamber using plasma includes one window, another window, a light receiving unit, a light source, and an optical branching unit which is disposed between the light source and the other window, branches light emitted by the light source to an optical path toward the processing chamber and an optical path in other direction, and reflects light in the processing chamber from the other window, and a detection unit which detects the light having been emitted from the plasma and received by the light receiving unit using one branched light and other branched and reflected light. The apparatus processes the wafer according to a condition for the processing which is adjusted based on a result of the detection.
Abstract:
A method for operating a vacuum processing apparatus, the vacuum processing apparatus including: a plurality of cassette stands on which a cassette capable of housing a plurality of wafers therein can be placed; a plurality of vacuum processing vessels each having a processing chamber arranged therein, wherein the wafer is arranged and processed in the processing chamber; and at least one transport robot transporting the wafer on a transport path between either one of the plurality of cassettes and the plurality of vacuum processing vessels, the vacuum processing apparatus sequentially transporting in a predetermined transport order the plurality of wafers from either one of the plurality of cassettes to a predetermined one of the plurality of vacuum processing vessels and processing the plurality of wafers. The method includes a number determining step, a remaining-time determining step and a transport order skip step.
Abstract:
Transportation control in a vacuum processing device with high transportation efficiency without lowering throughput is provided. A control unit is configured to update in real time and holds device state information showing an action state of each of a process chamber, a transportation mechanism unit, a buffer room, and a holding mechanism unit, the presence of a process subject member, and a process state thereof; select a transport algorithm from among transport algorithm judgment rules that are obtained by simulating in advance a plurality of transport algorithms for controlling transportation of a process subject member for each condition of a combination of the number and arrangement of the process chambers and process time of a process subject member based on the device state information and process time of the process subject member; and compute a transport destination of the process subject member based on the selected transport algorithm.
Abstract:
A plasma processing apparatus processes a film layer to be processed disposed in advance on a surface of a wafer by using a plasma being switched on and off in a processing chamber in predetermined cycles and periods and includes a detection control unit for detecting a processing amount of the film layer on the surface of the wafer. The detection control unit includes a light source unit, a detection unit, and a film thickness/depth calculation unit. This detection control unit detects a plurality of times an amount indicating the intensity of light on a sample surface at predetermined cycles during a period in which the plasma is switched off while the wafer is being processed and detects a processing amount of the film layer on the sample surface by using the detected amount indicating the light intensity.
Abstract:
According to the present invention, a plasma processing apparatus includes an analysis unit that obtains wavelengths of the light correlated with a plasma processing result, selects, from the obtained wavelengths, a wavelength having a first factor that represents a deviation in an intensity distribution of the light and is larger than a first predetermined value, and predicts the plasma processing result using the selected wavelength, or an analysis unit that obtains values computed using each of light intensities of a plurality of wavelengths and correlated with the plasma processing result, selects, from the obtained values, a value having a second factor that represents a deviation in a distribution of the obtained values and is larger than a second predetermined value, and predicts the plasma processing result using the selected value.
Abstract:
A plasma processing method of processing layer structure previously formed on an upper surface of a wafer disposed in a processing chamber within a vacuum container and having a layer to be processed and an undercoating layer disposed under the layer by plasma in the processing chamber, includes a step of calculating an etching amount of the layer to be processed at time during processing of any wafer by using result of comparing real pattern data with detection pattern data obtained by combining two patterns of intensity having as parameter wavelength of interference light obtained by processing the layer structure containing three or more undercoating layers having different thickness and the layer to be processed in advance of the processing of the any wafer and a real pattern of intensity having as parameter the wavelength of the interference light obtained during processing of the layer structure on the any wafer.