Abstract:
A thermometer comprises an emitting unit, a light receiving unit, a light collecting unit, and a calculation unit. The emitting unit is configured to emit a measurement light into a flue, wherethrough a gas that contains light scattering particles flows. The light receiving unit is configured to receive, of the measurement light, scattered measurement light scattered by the light scattering particles. The light collecting unit is configured to collect the scattered measurement light existing on the light receiving axis. The calculation unit is configured to calculate the temperature inside the flue based on an intensity ratio of absorption spectra at a plurality of wavelengths.
Abstract:
A gas analysis device includes a probe tube, a flange, an optical system member, and heaters. The probe tube includes an optical path through which measurement light is projected onto a prescribed measurement region of a sample gas flowing through a flue and/or is received from the measurement region. The flange is fixed to the outer periphery of the probe tube and is attached to a pipe side wall. The optical system member projects measurement light onto the sample gas S within the measurement region and/or receives measurement light from the measurement region. The heaters are disposed within the flange and heats the portion where the probe tube and flange are fixed to each other.
Abstract:
A method of calibrating a gas analysis apparatus that measures the moisture concentration in a gas using a radiating unit includes a moisture concentration measurement value calibrated based on the relationship between the intensity of an absorption spectrum of moisture of a concentration to be measured and the intensity of an absorption spectrum of an other component gas that can be measured by the radiating unit, for which the relationship to the intensity of the absorption spectrum of moisture of the measured prescribed concentration is known, and based on the intensity of an absorption spectrum obtained by measuring the other component gas.
Abstract:
A thermometer comprises an emitting unit, a light receiving unit, a lens unit, and a calculation unit. The emitting unit is configured to emit a measurement light into a flue, wherethrough a gas that contains light dispersing particles flows. The light receiving unit is configured to receive, of the measurement light, dispersed measurement light dispersed by the light dispersing particles. The lens unit is configured to set its focal point at a prescribed position inside the flue and along the light receiving axis. The calculation unit is configured to calculate the temperature inside the flue based on an intensity ratio of absorption spectra at a plurality of wavelengths.
Abstract:
A gas analyzing apparatus includes a plurality of light sources, an inlet, a light detector, and an analyzing unit. The plurality of light sources simultaneously output a plurality of measurement light beams. The inlet introduces the plurality of measurement light beams into a measurement space. The light detector measures total intensity. The analyzing unit analyzes the target gases based on a difference between a measured target intensity and a reference intensity, in which the measured target intensity is a total intensity measured by the light detector after passing through the measurement space in which one of the target gases exists, while the reference intensity is the total intensity measured by the light detector after passing through the measurement space in which none of the target gases exists.
Abstract:
A gas measurement apparatus measures a target gas. The gas measurement apparatus includes a light source, a first light receiving apparatus, a first phase-sensitive detection apparatus, an R calculation unit, and a setting unit. The light source oscillates a laser light that has a central wavelength determined by a main current and is modulated according to a modulation current, with the central wavelength being varied. The first light receiving apparatus outputs a detection signal according to an intensity of the laser light transmitted through a standard sample. The first phase-sensitive detection apparatus obtains a second harmonic component oscillated at a harmonic frequency ω2 twice as large as a modulation frequency ω1. The R calculation unit calculates a peak-bottom ratio R. The setting unit sets a width of wavelength modulation of the laser light so that the peak-bottom ratio R satisfies a predetermined condition.
Abstract:
A method of calibrating a gas analysis apparatus that measures the moisture concentration in a gas using a radiating unit includes a moisture concentration measurement value calibrated based on the relationship between the intensity of an absorption spectrum of moisture of a concentration to be measured and the intensity of an absorption spectrum of an other component gas that can be measured by the radiating unit, for which the relationship to the intensity of the absorption spectrum of moisture of the measured prescribed concentration is known, and based on the intensity of an absorption spectrum obtained by measuring the other component gas.