Abstract:
The invention provides a method for patterning a flexible substrate. The method for patterning a flexible substrate includes providing a carrier substrate. A release layer is formed on the carrier substrate. A flexible substrate film is formed on the release layer. A plurality of UV blocking mask patterns is formed covering various portions of the flexible substrate film and the release layer. A UV lighting process is performed to expose the flexible substrate film and the release layer not covered by the UV blocking mask patterns, to a UV light. A debonding step is performed so that the various portions of the flexible substrate film directly above the various portions of the release layer, which were not exposed to the UV light, are separated from the carrier substrate.
Abstract:
A gas barrier substrate including a first gas barrier layer, a substrate, and a second gas barrier layer is provided. The first gas barrier layer has a central bonding surface bonded with the substrate and a peripheral boding surface surrounding the central bonding surface. The second gas barrier layer entirely covers the substrate and the first gas barrier layer. The second gas barrier layer is bonded with the substrate and the peripheral boding surface of the first gas barrier layer, wherein a minimum distance from an edge of the substrate to an edge of the first gas barrier layer is greater than a thickness of the first gas barrier layer.
Abstract:
A substrate structure applied in flexible devices is provided. The substrate structure includes a carrier; a release layer with a first area formed on the carrier, which has a first adhesion force to the carrier; and a flexible substrate with a second area overlying part of the first area of the release layer and contacting the carrier, which has a second adhesion force to the release layer and a third adhesion force to the carrier, wherein the first area is larger than or equal to the second area, the third adhesion force is greater than the first adhesion force, and the first adhesion force is greater than the second adhesion force.
Abstract:
The invention provides a method for patterning a flexible substrate. The method for patterning a flexible substrate includes providing a carrier substrate. A release layer is formed on the carrier substrate. A flexible substrate film is formed on the release layer. A plurality of UV blocking mask patterns is formed covering various portions of the flexible substrate film and the release layer. A UV lighting process is performed to expose the flexible substrate film and the release layer not covered by the UV blocking mask patterns, to a UV light. A debonding step is performed so that the various portions of the flexible substrate film directly above the various portions of the release layer, which were not exposed to the UV light, are separated from the carrier substrate.
Abstract:
The invention provides a method for patterning a flexible substrate. The method for patterning a flexible substrate includes providing a carrier substrate. A release layer is formed on the carrier substrate. A flexible substrate film is formed on the release layer. A plurality of UV blocking mask patterns is formed covering various portions of the flexible substrate film and the release layer. A UV lighting process is performed to expose the flexible substrate film and the release layer not covered by the UV blocking mask patterns, to a UV light. A debonding step is performed so that the various portions of the flexible substrate film directly above the various portions of the release layer, which were not exposed to the UV light, are separated from the carrier substrate.
Abstract:
A gas barrier substrate including a first gas barrier layer, a substrate, and a second gas barrier layer is provided. The first gas barrier layer has a central bonding surface bonded with the substrate and a peripheral boding surface surrounding the central bonding surface. The second gas barrier layer entirely covers the substrate and the first gas barrier layer. The second gas barrier layer is bonded with the substrate and the peripheral boding surface of the first gas barrier layer, wherein a minimum distance from an edge of the substrate to an edge of the first gas barrier layer is greater than a thickness of the first gas barrier layer.
Abstract:
The present invention employs the printable process to fabricate a multi-layered laminate gas barrier film. According to an embodiment of the present invention, after providing a plastic substrate, a first organic layer is printed with a first pattern on the plastic substrate. A first inorganic layer is printed to the first organic layer, filling up openings within the first pattern of the first organic layer and covering a surface of the first organic layer. A second organic layer is printed with a second pattern on the first inorganic layer. A second inorganic layer is printed to the second organic layer, filling up openings within the second pattern of the second organic layer and covering a surface of the second organic layer.
Abstract:
The invention provides a method for patterning a flexible substrate. The method for patterning a flexible substrate includes providing a carrier substrate. A release layer is formed on the carrier substrate. A flexible substrate film is formed on the release layer. A plurality of UV blocking mask patterns is formed covering various portions of the flexible substrate film and the release layer. A UV lighting process is performed to expose the flexible substrate film and the release layer not covered by the UV blocking mask patterns, to a UV light. A debonding step is performed so that the various portions of the flexible substrate film directly above the various portions of the release layer, which were not exposed to the UV light, are separated from the carrier substrate.
Abstract:
A gas barrier substrate including a first gas barrier layer, a substrate, and a second gas barrier layer is provided. The first gas barrier layer has a central bonding surface bonded with the substrate and a peripheral boding surface surrounding the central bonding surface. The second gas barrier layer entirely covers the substrate and the first gas barrier layer. The second gas barrier layer is bonded with the substrate and the peripheral boding surface of the first gas barrier layer, wherein a minimum distance from an edge of the substrate to an edge of the first gas barrier layer is greater than a thickness of the first gas barrier layer.
Abstract:
A substrate structure including a bottom organic layer, at least one inorganic layer, at least one organic layer and at least one protruding object is provided. The at least one protruding object is protruded from an upper surface of the bottom organic layer or the organic layer. A maximum height of the protruding object protruded from the upper surface of the bottom organic layer or the organic layer is H, and a thickness of the organic layer covering the protruding object is T, wherein T≧1.1H.