Abstract:
In an embodiment, a processor includes a first core and a power management agent (PMA), coupled to the first core, to include a static table that stores a list of operations, and a plurality of columns each to specify a corresponding flow that includes a corresponding subset of the operations. Execution of each flow is associated with a corresponding state of the first core. The PMA includes a control register (CR) that includes a plurality of storage elements to receive one of a first value and a second value. The processor includes execution logic, responsive to a command to place the first core into a first state, to execute an operation of a first flow when a corresponding storage element stores the first value and to refrain from execution of an operation of the first flow when the corresponding element stores the second value. Other embodiments are described and claimed.
Abstract:
Methods and apparatus relating to techniques for flexible and/or dynamic frequency-related telemetry are described. In an embodiment, logic, coupled to a processor, communicates information to a module. The communicated information includes a duration counter value corresponding to a duration in which an operating characteristic of the processor is controlled. Other embodiments are also disclosed and claimed.
Abstract:
In an embodiment, a processor includes a first core and a power management agent (PMA), coupled to the first core, to include a static table that stores a list of operations, and a plurality of columns each to specify a corresponding flow that includes a corresponding subset of the operations. Execution of each flow is associated with a corresponding state of the first core. The PMA includes a control register (CR) that includes a plurality of storage elements to receive one of a first value and a second value. The processor includes execution logic, responsive to a command to place the first core into a first state, to execute an operation of a first flow when a corresponding storage element stores the first value and to refrain from execution of an operation of the first flow when the corresponding element stores the second value. Other embodiments are described and claimed.
Abstract:
Techniques and mechanisms for transparently transitioning an interconnect fabric between a first frequency and a second frequency. In an embodiment, the fabric is coupled to an end point device via an asynchronous device. One or more nodes of the fabric operate in a first clock domain based on a clock signal, while the end point device operates in a different clock domain. Controller circuitry changes a frequency of the clock signal by stalling the clock signal throughout a first period of time which is greater than a duration of three cycles of a lower one of the first frequency or the second frequency. After the first period of time, cycling of the clock signal is provided at the second frequency. In another embodiment, the asynchronous device enables the frequency change without preventing communication with the end point device.
Abstract:
In an embodiment, a processor includes a first core and a power management agent (PMA), coupled to the first core, to include a static table that stores a list of operations, and a plurality of columns each to specify a corresponding flow that includes a corresponding subset of the operations. Execution of each flow is associated with a corresponding state of the first core. The PMA includes a control register (CR) that includes a plurality of storage elements to receive one of a first value and a second value. The processor includes execution logic, responsive to a command to place the first core into a first state, to execute an operation of a first flow when a corresponding storage element stores the first value and to refrain from execution of an operation of the first flow when the corresponding element stores the second value. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a plurality of cores and a plurality of temperature sensors, where each core is proximate to at least one temperature sensor. The processor also includes a power control unit (PCU) including temperature logic to receive temperature data that includes a corresponding temperature value from each of the temperature sensors. Responsive to an indication that a highest temperature value of the temperature data exceeds a threshold, the temperature logic is to adjust a plurality of domain frequencies according to a determined policy that is based on instruction execution characteristics of at least two of the plurality of cores. Each domain frequency is associated with a corresponding domain that includes at least one of the plurality of cores and each domain frequency is independently adjustable. Other embodiments are described and claimed.
Abstract:
With the progress toward multi-core processors, each core is can not readily ascertain the status of the other dies with respect to an idle or active status. A proposal for utilizing an interface to transmit core status among multiple cores in a multi-die microprocessor is discussed. Consequently, this facilitates thermal management by allowing an optimal setting for setting performance and frequency based on utilizing each core status.
Abstract:
Techniques and mechanisms for transparently transitioning an interconnect fabric between a first frequency and a second frequency. In an embodiment, the fabric is coupled to an end point device via an asynchronous device. One or more nodes of the fabric operate in a first clock domain based on a clock signal, while the end point device operates in a different clock domain. Controller circuitry changes a frequency of the clock signal by stalling the clock signal throughout a first period of time which is greater than a duration of three cycles of a lower one of the first frequency or the second frequency. After the first period of time, cycling of the clock signal is provided at the second frequency. In another embodiment, the asynchronous device enables the frequency change without preventing communication with the end point device.
Abstract:
In an embodiment, a processor includes a plurality of cores and a plurality of temperature sensors, where each core is proximate to at least one temperature sensor. The processor also includes a power control unit (PCU) including temperature logic to receive temperature data that includes a corresponding temperature value from each of the temperature sensors. Responsive to an indication that a highest temperature value of the temperature data exceeds a threshold, the temperature logic is to adjust a plurality of domain frequencies according to a determined policy that is based on instruction execution characteristics of at least two of the plurality of cores. Each domain frequency is associated with a corresponding domain that includes at least one of the plurality of cores and each domain frequency is independently adjustable. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a first core and a power management agent (PMA), coupled to the first core, to include a static table that stores a list of operations, and a plurality of columns each to specify a corresponding flow that includes a corresponding subset of the operations. Execution of each flow is associated with a corresponding state of the first core. The PMA includes a control register (CR) that includes a plurality of storage elements to receive one of a first value and a second value. The processor includes execution logic, responsive to a command to place the first core into a first state, to execute an operation of a first flow when a corresponding storage element stores the first value and to refrain from execution of an operation of the first flow when the corresponding element stores the second value. Other embodiments are described and claimed.