Abstract:
An apparatus includes a first circuit, a second circuit and a third circuit. The first circuit may be configured to generate a plurality of second signals by a voltage translation of a plurality of first signals. The second circuit may be configured to switch the second signals to generate a plurality of third signals. The second signals are generally switched such that (i) all third signals are inactive before one of the third signals transitions from inactive to active while a switching condition is enabled and (ii) all third signals are switched inactive while the switching condition is disabled. The third circuit may be configured to amplify the third signals to generate a plurality of output signals. Each of the output signals generally has a current capacity to drive one or more of a plurality of diodes in a diode switch circuit.
Abstract:
An apparatus having a first circuit, a second circuit and a third circuit is disclosed. The first circuit may be configured to translate an input signal in a first voltage domain to generate a complementary pair of first signals in a second voltage domain. The second circuit may be configured to logically switch the first signals to generate a complementary pair of second signals in the second voltage domain. The first signals may be logically switched such that both of the second signals are inactive before one of the second signals transitions from inactive to active. The third circuit may be configured to amplify the second signals to generate a complementary pair of output signals in the second voltage domain. Each of the output signals generally has a current capacity to drive one or more of a plurality of diodes in a diode switch circuit.
Abstract:
An integrated circuit includes a transmit/receive (T/R) circuit and a gate/drain bias control circuit. The transmit/receive (T/R) circuit may be configured to transmit and receive radio frequency (RF) signals. The gate/drain bias control circuit may be configured to enable or disable internal gate switching of one or more amplifiers of the transmit/receive (T/R) circuit in response to a first control signal. When the internal gate switching is disabled the one or more amplifiers of the transmit/receive (T/R) circuit are enabled and disabled solely by external drain switching.
Abstract:
An apparatus having a first circuit, a second circuit and a third circuit is disclosed. The first circuit may be configured to translate an input signal in a first voltage domain to generate a complementary pair of first signals in a second voltage domain. The second circuit may be configured to logically switch the first signals to generate a complementary pair of second signals in the second voltage domain. The first signals may be logically switched such that both of the second signals are inactive before one of the second signals transitions from inactive to active. The third circuit may be configured to amplify the second signals to generate a complementary pair of output signals in the second voltage domain. Each of the output signals generally has a current capacity to drive one or more of a plurality of diodes in a diode switch circuit.
Abstract:
An apparatus having a plurality of insulating layers, a plurality of conductive layers and a plating is disclosed. The conductive layers may be separated by the insulating layers. A first pattern in a first of the conductive layers generally extends to an edge castellation. A second pattern in a second of the conductive layers may also extends to the edge castellation. The plating may be disposed in the edge castellation and connect the first pattern to the second pattern. The plating in the castellation may extend at most between a subset of the conductive layers.