Abstract:
The present invention provides an improved optical pickup device based on the developing electronically reconfigurable diffraction grating MEMS technology. The improved optical pickup device has applications that include but are not limited to CD and DVD for audio, video and computer technology. The present invention can provide improvements to this current and future technology with higher data storage density and faster retrieval. In a preferred embodiment, the optical pickup apparatus comprises an electronically reconfigurable diffraction grating modulating relative light intensities as among at least two different diffraction orders of light diffracted by the electronically reconfigurable diffraction grating; focusing optics for focusing the light diffracted by the electronically reconfigurable diffraction grating into diffractive spots corresponding with each of the diffraction orders and onto an optical storage medium, which light is then reflected by the optical storage medium; and a detector for detecting the light reflected by the optical storage medium and striking said detector.
Abstract:
Disclosed herein is an interferometry device and associated method and computerized media for testing optical components including those with high aberrations, comprising: situating an optical component under test between a source of a spherical test wavefront and a reference mirror; propagating a spherical test wavefront, whereby an axial line is defined by a direction of propagation of said wavefront; deriving a substantially complete first-tilt-alignment wavefront metrology of the optical component under test from a plurality of first-tilt-alignment interferograms obtained with the optical component under test held fixed at a first predetermined tilt angle relative to a direction of propagation of said wavefront; and varying an axial displacement between the optical component under test and the spherical reference mirror to obtain each first-tilt-alignment interferogram. By varying the tilt angle, one can also derive a substantially complete surface metrology of the optical component under test.
Abstract:
Optical coherence tomography with 3D coherence scanning is disclosed, using at least three fibers (201, 202, 203) for object illumination and collection of backscattered light. Fiber tips (1, 2, 3) are located in a fiber tip plane (71) normal to the optical axis (72). Light beams emerging from the fibers overlap at an object (122) plane, a subset of intersections of the beams with the plane defining field of view (266) of the optical coherence tomography apparatus. Interference of light emitted and collected by the fibers creates a 3D fringe pattern. The 3D fringe pattern is scanned dynamically over the object by phase shift delays (102, 104) controlled remotely, near ends of the fibers opposite the tips of the fibers, and combined with light modulation. The dynamic fringe pattern is backscattered by the object, transmitted to a light processing system (108) such as a photo detector, and produces an AC signal on the output of the light processing system (108). Phase demodulation of the AC signal at selected frequencies and signal processing produce a measurement of a 3D profile of the object.
Abstract:
An interferometry method and associated system and computerized media for testing samples under test including those with high aberrations, comprising: situating a sample under test between a tilt mirror and a reference mirror, the tilt mirror tiltable with at least one degree of freedom about at least one tilt mirror axis, and further translatable along an axial line defined by a direction of propagation of a test wavefront from a source thereof; propagating the test wavefront toward the tilt mirror; after the test wavefront has been reflected by the tilt mirror, further propagating the test wavefront toward a reference mirror; and deriving a substantially complete first-tilt-alignment wavefront metrology of the sample under test from a plurality of first-tilt-alignment interferograms taken with the tilt mirror held fixed at a first predetermined tilt mirror angle while discreetly varying a displacement between the sample under test and the reference mirror.
Abstract:
A system and related method for coded aperture sensing, comprising: passing at least one scene wavefront from a target scene through at least one original coded aperture mask onto a focal plane array, producing a diffracted projection of the target scene; and processing the diffracted projection into a representation of the target scene by correlating a function of the diffracted projection with a function of a known array pattern of the at least one original coded aperture mask and by using at least one reconstructing wavefront for holographic reconstructing.
Abstract:
Disclosed herein is an interferometry device and associated method and computerized media for testing optical components including those with high aberrations, comprising: situating an optical component under test between a source of a spherical test wavefront and a spherical reference mirror; propagating a spherical test wavefront, whereby an axial line is defined by a direction of propagation of said wavefront; deriving a substantially complete first-tilt-alignment wavefront metrology of the optical component under test from a plurality of first-tilt-alignment interferograms obtained with the optical component under test held fixed at a first predetermined tilt angle relative to a direction of propagation of said wavefront; and varying an axial displacement between the optical component under test and the spherical reference mirror to obtain each first-tilt-alignment interferogram. By varying the tilt angle, one can also derive a substantially complete surface metrology of the optical component under test.
Abstract:
Optical coherence tomography with 3D coherence scanning is disclosed, using at least three fibers (201, 202, 203) for object illumination and collection of backscattered light. Fiber tips (1, 2, 3) are located in a fiber tip plane (71) normal to the optical axis (72). Light beams emerging from the fibers overlap at an object (122) plane, a subset of intersections of the beams with the plane defining field of view (266) of the optical coherence tomography apparatus. Interference of light emitted and collected by the fibers creates a 3D fringe pattern. The 3D fringe pattern is scanned dynamically over the object by phase shift delays (102, 104) controlled remotely, near ends of the fibers opposite the tips of the fibers, and combined with light modulation. The dynamic fringe pattern is backscattered by the object, transmitted to a light processing system (108) such as a photo detector, and produces an AC signal on the output of the light processing system (108). Phase demodulation of the AC signal at selected frequencies and signal processing produce a measurement of a 3D profile of the object.
Abstract:
A fiberoptic wavelength combiner comprises: a collimating lens having a first surface and a second surface, opposite the first surface; two input optical fibers secured to the first surface, each input optical fiber conducting light at a wavelength that is different from other input optical fibers; a wedged mirror spaced from the second surface, the wedged mirror having a front surface facing the collimating lens and a rear surface, the front surface provided with a first reflective coating and the rear surface provided with a second reflective coating; and an output optical fiber secured to the first surface, whereby light from the input optical fibers is collimated by the lens and made incident on the wedged mirror and its first and second reflective coatings to thereby direct the light back through the collimating lens onto the output optical fiber. Further, a method of aligning the fiberoptic wavelength combiner is provided.