Abstract:
A sample analysis system including: a droplet device that intermittently introduces a sample to a measurement region set in plasma; a light emission detection device that detects light emission in the measurement region at a detection timing, the detection timing being set at a predetermined cycle in advance; and an analysis device that analyzes the sample based on the detected light emission, the analysis device being provided with: a distribution computing unit that computes a time-spatial light intensity distribution based on the detected light emission, the time-spatial light intensity distribution being a distribution of a light intensity according to the detection timing, a position in the measurement region, and an wavelength component of the light emission; and a characteristic specifying unit that computes a feature amount that correlates with a sample characteristic indicating a property of the sample and specifies the sample characteristic based on the feature amount.
Abstract:
The present invention provides means for evaluating harmfulness of a chemical substance before occurrence of cell death, that is, more quickly and sensitively compared to conventional methods wherein the remaining viable cell count is determined using a reductive coloring reagent after a period of time required for occurrence of cell death due to the chemical substance. A double-stranded RNA probe comprising an RNA strand labeled with a fluorescent dye A that emits fluorescence, and an RNA strand labeled with a fluorescent dye B that quenches emission from a fluorescent dye in the vicinity thereof, wherein the fluorescence is quenched in a double-stranded state due to occurrence of fluorescence resonance energy transfer (FRET) between the two kinds of fluorescent dyes. When the probe is introduced into a cell and the cell is in a normal state, the double-stranded RNA is quickly degraded by activity of intracellular ribonuclease to cause cancellation of the FRET state, allowing fluorescence emission of the fluorescent dye A. On the other hand, in cases where the cell is harmfully influenced, activity of intracellular ribonuclease is suppressed, so that the double-stranded RNA remains undegraded, and the fluorescent dye A remains quenched due to the influence of the fluorescent dye B. By detecting a decrease in the degradation rate of intracellular RNA based on this principle, harmfulness of a chemical substance can be quickly and sensitively evaluated before occurrence of cell death.
Abstract:
The invention relates to a bioluminescent substrate suitably usable in a series of artificial luciferases (ALuc), and the invention provides a wavelength-shifted spectrum with a selective high intensity luminescence and high luminescence stability obtained by the use of the substrate together with ALuc. The luminescent substrate for ALuc obtained by the invention can be included together with a suitable luminescence solution in a luminescence kit. The bioluminescent substrate for ALuc of the invention can exhibit unprecedented excellent luminescence specificity and functionality in the conventional bioluminescence probe, two-hybrid assay, bioluminescent capsule, and reporter gene assay.
Abstract:
A spotter that includes a plurality of spotting heads, each of the plurality of spotting heads having a discharging portion at a tip portion, the plurality of spotting heads form an m×n array (m, n>1) with m spotting heads arranged lengthwise and n spotting heads arranged crosswise; and a pitch varying mechanism configured to vary an array pitch of the plurality of spotting heads arrayed in a lengthwise direction and an array pitch of the plurality of spotting heads arrayed in a crosswise direction.