Abstract:
The invention relates to a soft hydrogel contact lens, especially a silicone hydrogel contact lens, which has a capability of delivering a hydrophobic comfort agent into the eye of a wearer. The hydrophobic comfort agent includes without limitation a monoglyceride, a diglyceride, a triglyceride, a glycolipid, a glyceroglycolipid, a sphingolipid, a sphingo-glycolipid, a phospholipid, a fatty acid, a fatty alcohol, a hydrocarbon having a C12-C28 chain in length, a mineral oil, a silicone oil, or a mixture thereof. It can be released from the soft hydrogel contact lens into the eye of a wearer when being worn so as to strengthen and stabilize the tear film lipid layer and alleviate the dryness of the eye.
Abstract:
The invention is related to a cost-effective method for making a silicone hydrogel contact lens having a crosslinked hydrophilic coating thereon. A method of the invention involves heating a silicone hydrogel contact lens in an aqueous solution in the presence of a water-soluble, highly branched, thermally-crosslinkable hydrophilic polymeric material having positively-charged azetidinium groups, to and at a temperature from about 40° C. to about 140° C. for a period of time sufficient to covalently attach the thermally-crosslinkable hydrophilic polymeric material onto the surface of the silicone hydrogel contact lens through covalent linkages each formed between one azetidinium group and one of the reactive functional groups on and/or near the surface of the silicone hydrogel contact lens, thereby forming a crosslinked hydrophilic coating on the silicone hydrogel contact lens. Such method can be advantageously implemented directly in a sealed lens package during autoclave.
Abstract:
The present invention relates to improved contact lens products which not only have initial insertion comfort but also are comfortable to wear for more than about 6 hours. The invention is achieved by packaging and storing a hydrogel lens with two or more leachable polymeric lubricants incorporated therein in a relatively viscous packaging solution including a relatively low molecular weight polyethylene glycol (PEG) and a viscosity-enhancing hydrophilic polymer. The present invention also provides methods for making contact lens products of the invention.
Abstract:
The present invention relates to improved contact lens products which not only have initial insertion comfort but also are comfortable to wear for more than about 6 hours. The invention is achieved by packaging and storing a hydrogel lens with two or more leachable polymeric lubricants incorporated therein in a relatively viscous packaging solution including a relatively low molecular weight polyethylene glycol (PEG) and a viscosity-enhancing hydrophilic polymer. The present invention also provides methods for making contact lens products of the invention.
Abstract:
The invention is related to a cost-effective method for making a silicone hydrogel contact lens having a crosslinked hydrophilic coating thereon. A method of the invention involves heating a silicone hydrogel contact lens in an aqueous solution in the presence of a water-soluble, highly branched, thermally-crosslinkable hydrophilic polymeric material having positively-charged azetidinium groups, to and at a temperature from about 40° C. to about 140° C. for a period of time sufficient to covalently attach the thermally-crosslinkable hydrophilic polymeric material onto the surface of the silicone hydrogel contact lens through covalent linkages each formed between one azetidinium group and one of the reactive functional groups on and/or near the surface of the silicone hydrogel contact lens, thereby forming a crosslinked hydrophilic coating on the silicone hydrogel contact lens. Such method can be advantageously implemented directly in a sealed lens package during autoclave.
Abstract:
The invention is related to a cost-effective method for making a silicone hydrogel contact lens having a crosslinked hydrophilic coating thereon. A method of the invention involves heating a silicone hydrogel contact lens in an aqueous solution in the presence of a water-soluble, highly branched, thermally-crosslinkable hydrophilic polymeric material having positively-charged azetidinium groups, to and at a temperature from about 40° C. to about 140° C. for a period of time sufficient to covalently attach the thermally-crosslinkable hydrophilic polymeric material onto the surface of the silicone hydrogel contact lens through covalent linkages each formed between one azetidinium group and one of the reactive functional groups on and/or near the surface of the silicone hydrogel contact lens, thereby forming a crosslinked hydrophilic coating on the silicone hydrogel contact lens. Such method can be advantageously implemented directly in a sealed lens package during autoclave.
Abstract:
The invention is related to a cost-effective method for making a silicone hydrogel contact lens having a crosslinked hydrophilic coating thereon. A method of the invention involves heating a silicone hydrogel contact lens in an aqueous solution in the presence of a water-soluble, highly branched, thermally-crosslinkable hydrophilic polymeric material having positively-charged azetidinium groups, to and at a temperature from about 40° C. to about 140° C. for a period of time sufficient to covalently attach the thermally-crosslinkable hydrophilic polymeric material onto the surface of the silicone hydrogel contact lens through covalent linkages each formed between one azetidinium group and one of the reactive functional groups on and/or near the surface of the silicone hydrogel contact lens, thereby forming a crosslinked hydrophilic coating on the silicone hydrogel contact lens. Such method can be advantageously implemented directly in a sealed lens package during autoclave.
Abstract:
The invention is related to a cost-effective method for making a silicone hydrogel contact lens having a crosslinked hydrophilic coating thereon. A method of the invention involves heating a silicone hydrogel contact lens in an aqueous solution in the presence of a water-soluble, highly branched, thermally-crosslinkable hydrophilic polymeric material having positively-charged azetidinium groups, to and at a temperature from about 40° C. to about 140° C. for a period of time sufficient to covalently attach the thermally-crosslinkable hydrophilic polymeric material onto the surface of the silicone hydrogel contact lens through covalent linkages each formed between one azetidinium group and one of the reactive functional groups on and/or near the surface of the silicone hydrogel contact lens, thereby forming a crosslinked hydrophilic coating on the silicone hydrogel contact lens. Such method can be advantageously implemented directly in a sealed lens package during autoclave.
Abstract:
The invention is related to a cost-effective method for making a silicone hydrogel contact lens having a crosslinked hydrophilic coating thereon. A method of the invention involves heating a silicone hydrogel contact lens in an aqueous solution in the presence of a water-soluble, highly branched, thermally-crosslinkable hydrophilic polymeric material having positively-charged azetidinium groups, to and at a temperature from about 40° C. to about 140° C. for a period of time sufficient to covalently attach the thermally-crosslinkable hydrophilic polymeric material onto the surface of the silicone hydrogel contact lens through covalent linkages each formed between one azetidinium group and one of the reactive functional groups on and/or near the surface of the silicone hydrogel contact lens, thereby forming a crosslinked hydrophilic coating on the silicone hydrogel contact lens. Such method can be advantageously implemented directly in a sealed lens package during autoclave.
Abstract:
The present invention provides a method for preparing a medical device, preferably a contact lens, having an antimicrobial metal-containing LbL coating on a medical device, wherein the antimicrobial metal-containing LbL coating comprises at least one layer of a negatively charged polyionic material having —COOAg groups and/or silver nanoparticles formed by reducing Ag+ ions associated with the —COO− groups of the negatively charged polyionic material. In addition, the present invention provides a medical device prepared according to a method of the invention.