Abstract:
A clock data recovery circuit module including a clock recovery circuit, a frequency comparison circuit and a signal detecting circuit is provided. The clock recovery circuit is configured to output a data recovery stream and a data recovery clock based on an input signal and a clock signal. The frequency comparison circuit is coupled to the clock recovery circuit. The frequency comparison circuit is configured to compare a frequency difference between the data recovery clock and the clock signal to adjust the frequency of the clock signal based on a comparison result. The signal detecting circuit is coupled to the frequency comparison circuit. The signal detecting circuit is configured to receive and detect the input signal, and the signal detecting circuit determines whether to enable the frequency comparison circuit according to the detection result. Furthermore, a method for generating a data recovery clock is also provided.
Abstract:
A sampling circuit module, a memory control circuit unit, and a method for sampling data are provided. The sampling circuit module includes a state machine circuit, a first delay line circuit, a second delay line circuit and a delay signal output circuit. In response to a first control signal, the state machine circuit outputs a second control signal and/or a third control signal. The first delay line circuit is configured to receive a reference clock signal and the second control signal to output a first delay clock signal. The second delay line circuit is configured to receive the reference clock signal and the third control signal to output a second delay clock signal. The delay signal output circuit is configured to receive the first delay clock signal and the second delay clock signal to output a third delay clock signal.
Abstract:
A reference frequency setting method of a memory storage apparatus including the following steps is provided. A setting code is read from a memory module or a storage unit by a first signal transmission path and stored into a register circuit. The setting code includes a first setting information. Whether the data having a specific frequency is inputted is detected. If not, the setting code stored in the register circuit is read, such that an oscillator circuit module of the memory storage apparatus generates a first reference frequency based on the first setting information. If yes, the setting code stored in the register circuit is updated by a second signal transmission path, and the updated setting code is read, such that the oscillator circuit module generates a second reference frequency based on a second setting information. The updated setting code includes the second setting information.
Abstract:
A signal processing method, a connector and a memory storage device are provided. The signal processing method is for the connector which does not include a crystal oscillator. The signal processing method includes: receiving a first signal stream from a host system; tracking a transmission frequency of the first signal stream, and obtaining a frequency shift quantity of the first signal stream relative to the transmission frequency; determining if a spread spectrum operation is performed on the first signal stream according to the frequency shift quantity to generate a determination result; generating a second signal stream according to the determination result and the transmission frequency. Accordingly, the spread spectrum operation is handled under the situation without a crystal oscillator.
Abstract:
A clock data recovery circuit module including a clock recovery circuit, a frequency comparison circuit and a signal detecting circuit is provided. The clock recovery circuit is configured to output a data recovery stream and a data recovery clock based on an input signal and a clock signal. The frequency comparison circuit is coupled to the clock recovery circuit. The frequency comparison circuit is configured to compare a frequency difference between the data recovery clock and the clock signal to adjust the frequency of the clock signal based on a comparison result. The signal detecting circuit is coupled to the frequency comparison circuit. The signal detecting circuit is configured to receive and detect the input signal, and the signal detecting circuit determines whether to enable the frequency comparison circuit according to the detection result. Furthermore, a method for generating a data recovery clock is also provided.
Abstract:
An exemplary embodiment of the present disclosure provides a reference clock signal generation method for a memory storage device. The method includes: receiving a first type signal from a host system; generating a first control parameter according to a frequency of the first type signal; receiving a second type signal from the host system after the first type signal is received; generating a second control parameter according to a frequency of the second type signal; and generating a reference clock signal meeting a first condition according to the second control parameter. Therefore, an efficiency of generating the reference clock signal can be improved.
Abstract:
A sampling circuit module, a memory control circuit unit, and a method for sampling data are provided. The sampling circuit module includes a state machine circuit, a first delay line circuit, a second delay line circuit and a delay signal output circuit. In response to a first control signal, the state machine circuit outputs a second control signal and/or a third control signal. The first delay line circuit is configured to receive a reference clock signal and the second control signal to output a first delay clock signal. The second delay line circuit is configured to receive the reference clock signal and the third control signal to output a second delay clock signal. The delay signal output circuit is configured to receive the first delay clock signal and the second delay clock signal to output a third delay clock signal.
Abstract:
A reference frequency setting method of a memory storage apparatus including the following steps is provided. A setting code is read from a memory module or a storage unit by a first signal transmission path and stored into a register circuit. The setting code includes a first setting information. Whether the data having a specific frequency is inputted is detected. If not, the setting code stored in the register circuit is read, such that an oscillator circuit module of the memory storage apparatus generates a first reference frequency based on the first setting information. If yes, the setting code stored in the register circuit is updated by a second signal transmission path, and the updated setting code is read, such that the oscillator circuit module generates a second reference frequency based on a second setting information. The updated setting code includes the second setting information.
Abstract:
A clock data recovery circuit module including a clock recovery circuit, a frequency comparison circuit and a signal detecting circuit is provided. The clock recovery circuit is configured to output a data recovery stream and a data recovery clock based on an input signal and a clock signal. The frequency comparison circuit is coupled to the clock recovery circuit. The frequency comparison circuit is configured to compare a frequency difference between the data recovery clock and the clock signal to adjust the frequency of the clock signal based on a comparison result. The signal detecting circuit is coupled to the frequency comparison circuit. The signal detecting circuit is configured to receive and detect the input signal, and the signal detecting circuit determines whether to enable the frequency comparison circuit according to the detection result. Furthermore, a method for generating a data recovery clock is also provided.
Abstract:
A signal processing method, a connector and a memory storage device are provided. The signal processing method is for the connector which does not include a crystal oscillator. The signal processing method includes: receiving a first signal stream from a host system; tracking a transmission frequency of the first signal stream, and obtaining a frequency shift quantity of the first signal stream relative to the transmission frequency; determining if a spread spectrum operation is performed on the first signal stream according to the frequency shift quantity to generate a determination result; generating a second signal stream according to the determination result and the transmission frequency. Accordingly, the spread spectrum operation is handled under the situation without a crystal oscillator.